Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
ABC - равнобедренный треугольник (AB=BC) => Угол A = Углу C. Угол A = (180-120)/2 = 30.
AO=7=R. Проведем радиус OC, который также равен 7. Найдем угол AOC, который равен дуге ABC, как центральный. Дуга ABC = Дуга AB+ дуга BC. Дуга AB= Угол С*2 (как вписанный). Дуга BC = Угол A*2 (как вписанный) => Дуга ABC = 120(30*2+30*2). Угол ОАС и АСО равны 30, по тому же принципу, что описал выше => АС = диагональ параллелограмма, которая делит угол BAO пополам => Параллелограмм ABCO является ромбом, а значит все стороны равны. AB = 7
7
Объяснение:
ABC - равнобедренный треугольник (AB=BC) => Угол A = Углу C. Угол A = (180-120)/2 = 30.
AO=7=R. Проведем радиус OC, который также равен 7. Найдем угол AOC, который равен дуге ABC, как центральный. Дуга ABC = Дуга AB+ дуга BC. Дуга AB= Угол С*2 (как вписанный). Дуга BC = Угол A*2 (как вписанный) => Дуга ABC = 120(30*2+30*2). Угол ОАС и АСО равны 30, по тому же принципу, что описал выше => АС = диагональ параллелограмма, которая делит угол BAO пополам => Параллелограмм ABCO является ромбом, а значит все стороны равны. AB = 7