Треугольники mnp и m1n1p1 подобны так, что mn и np соответствуют сторонам m1n1 и n1p1. найдите неизвестные стороны треугольников, если mn = 4 см, np = 5 см, m1n1 = 12 см, n1p1 = 18 см. 2.
Дан правильный тетраэдр МАВС. Все его ребра равны. АВ=АС=ВС=МА=МВ=МС=√6/2.
Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В. АМ || A₁M₁. Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁ Соединим точки А₁ и С₁, получим треугольник А₁С₁М₁ - нужное нам сечение. Причем А₁С₁ || AC, так как является средней линией треугольника АВС. Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4
Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС ОА=ОС=ОМ=R Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁ О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников АМС и А₁М₁С₁ с коэффициентом подобия 2.
радиус окружности описанной около равностороннего треугольника можно найти по формуле
при a=√6/2 получаем R=√6/2 ·√3/3=√2/2 Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1 Значит ВО₁=1/2 в силу подобия и ОО₁=ВО-ВО₁=1/2 ответ 1/2
Hi! My name is Jonathan. I have got many friends. But Joshua is my best friend. He is two years older than me. We have the common interests. Joshua is a true friend. He is very kind and merry. We spend much time together. Sometimes he helps me to do my homework. We often play different games on the computer together. We also like to spend our free time outside. We ride our bicycles and spend time in the fresh air. The word "friend " has an ending "end " , so I hope our friendship will never end .
АВ=АС=ВС=МА=МВ=МС=√6/2.
Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В. АМ || A₁M₁. Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁
Соединим точки А₁ и С₁, получим треугольник А₁С₁М₁ - нужное нам сечение.
Причем А₁С₁ || AC, так как является средней линией треугольника АВС.
Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4
Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС
ОА=ОС=ОМ=R
Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁
О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников АМС и А₁М₁С₁ с коэффициентом подобия 2.
радиус окружности описанной около равностороннего треугольника можно найти по формуле
при a=√6/2 получаем R=√6/2 ·√3/3=√2/2
Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1
Значит ВО₁=1/2 в силу подобия
и ОО₁=ВО-ВО₁=1/2
ответ 1/2