Объяснение:
Определение:
1. Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
Признаки:
2. Две противоположные стороны равны и параллельны.
3. Противоположные стороны попарно равны.
4. Диагонали точкой пересечения делятся пополам.
1. Рассмотрим ΔABC и ΔACD.
AC-общая.
∠1=∠4 (условие)
∠2=∠3 (условие)
⇒ ΔABC = ΔACD (2 признак)
⇒ AB=CD; BC=AD (соответственные элементы)
АВСD - параллелограмм (признак, п.3)
2. ∠1=∠4 (условие) - накрест лежащие при AB и CD и секущей РЕ.
⇒ AB║CD
∠2=∠3 (условие) - накрест лежащие при ВС и AD и секущей МК.
⇒ ВС║AD
AВСD - параллелограмм (определение, п.1)
3. ∠1=∠2 (условие) - накрест лежащие при ВС и AD и секущей BD.
∠3=∠4 (условие) - накрест лежащие при AB и CD и секущей АС.
4. Рассмотрим ΔАВС и ΔACD.
∠1=∠2 (условие)
∠3=∠4 (условие)
∠ВСА=180°-(∠1+∠3) (сумма углов Δ)
∠CAD=180°-(∠2+∠4) (сумма углов Δ)
⇒ ∠ВСА=∠CAD
АС - общая
⇒ ΔАВС = ΔACD (2 признак)
⇒ ВС=AD; AB=CD (соответственные элементы)
5. ∠1=∠2 (условие) - накрест лежащие при ВС и AD и секущей BD.
ВС=AD
АВСD - параллелограмм (признак, п.2)
6. Рассмотрим ΔВОС и ΔAOD.
∠ВОС=∠AOD (вертикальные)
∠ВСО=180°-(∠1+∠ВОС)
∠OAD=180°-(∠2+∠AOD)
⇒ ∠ВСО=∠OAD
АО=ОС (условие)
⇒ ΔВОС = ΔAOD (2 признак)
⇒BO=OD (соответственные элементы)
АВСD - параллелограмм (признак, п.4)
11 градусов
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD
Объяснение:
Определение:
1. Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
Признаки:
2. Две противоположные стороны равны и параллельны.
3. Противоположные стороны попарно равны.
4. Диагонали точкой пересечения делятся пополам.
1. Рассмотрим ΔABC и ΔACD.
AC-общая.
∠1=∠4 (условие)
∠2=∠3 (условие)
⇒ ΔABC = ΔACD (2 признак)
⇒ AB=CD; BC=AD (соответственные элементы)
АВСD - параллелограмм (признак, п.3)
2. ∠1=∠4 (условие) - накрест лежащие при AB и CD и секущей РЕ.
⇒ AB║CD
∠2=∠3 (условие) - накрест лежащие при ВС и AD и секущей МК.
⇒ ВС║AD
AВСD - параллелограмм (определение, п.1)
3. ∠1=∠2 (условие) - накрест лежащие при ВС и AD и секущей BD.
⇒ ВС║AD
∠3=∠4 (условие) - накрест лежащие при AB и CD и секущей АС.
⇒ AB║CD
AВСD - параллелограмм (определение, п.1)
4. Рассмотрим ΔАВС и ΔACD.
∠1=∠2 (условие)
∠3=∠4 (условие)
∠ВСА=180°-(∠1+∠3) (сумма углов Δ)
∠CAD=180°-(∠2+∠4) (сумма углов Δ)
⇒ ∠ВСА=∠CAD
АС - общая
⇒ ΔАВС = ΔACD (2 признак)
⇒ ВС=AD; AB=CD (соответственные элементы)
АВСD - параллелограмм (признак, п.3)
5. ∠1=∠2 (условие) - накрест лежащие при ВС и AD и секущей BD.
⇒ ВС║AD
ВС=AD
АВСD - параллелограмм (признак, п.2)
6. Рассмотрим ΔВОС и ΔAOD.
∠1=∠2 (условие)
∠ВОС=∠AOD (вертикальные)
∠ВСО=180°-(∠1+∠ВОС)
∠OAD=180°-(∠2+∠AOD)
⇒ ∠ВСО=∠OAD
АО=ОС (условие)
⇒ ΔВОС = ΔAOD (2 признак)
⇒BO=OD (соответственные элементы)
АВСD - параллелограмм (признак, п.4)
11 градусов
Объяснение:
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD