Три точки, лежащие вдоль одной прямой-A, B, C. Расположение точек соответствует соотношению AB : BC = 2 : 3. Если длина отрезка AB составляет 5 см, какова длина отрезка AC?
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
Т.к. дан косинус, то нужно построить прямоугольный треугольник))) 1) строим две пересекающиеся перпендикулярные прямые)) обозначаем точку пересечения С ---это вершина прямого угла))) это будут катеты в будущем прямоугольном треугольнике... осталось построить гипотенузу... сos(x) = 0.75 = 3/4 по определению: косинус ---это отношение противолежащего катета к гипотенузе... т.е. противолежащий к нужному углу катет будет равен 3 см (или 6 м или 9 км...), а гипотенуза соответственно 4 см (или 8 м или 12 км...))) 2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А. 3) из точки А раствором циркуля в 4 см строим окружность... она пересечется с другой перпендикулярной прямой ---обозначаем точку В. АВ--гипотенуза 4 см СА--катет 3 см искомый угол ВАС его косинус = АС / АВ = 3/4 = 0.75
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
1) строим две пересекающиеся перпендикулярные прямые))
обозначаем точку пересечения С ---это вершина прямого угла)))
это будут катеты в будущем прямоугольном треугольнике...
осталось построить гипотенузу...
сos(x) = 0.75 = 3/4
по определению: косинус ---это отношение противолежащего катета к гипотенузе...
т.е. противолежащий к нужному углу катет будет равен
3 см (или 6 м или 9 км...), а гипотенуза соответственно
4 см (или 8 м или 12 км...)))
2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А.
3) из точки А раствором циркуля в 4 см строим окружность...
она пересечется с другой перпендикулярной прямой ---обозначаем точку В.
АВ--гипотенуза 4 см
СА--катет 3 см
искомый угол ВАС
его косинус = АС / АВ = 3/4 = 0.75