Да красивая задача. O-центр вписанной окружности (точка сечения биссектрис) Проведем отрезок ES-параллельный основанию CB и касающийся окружности. ECSB-трапеция ,в которую вписана окружность. Причем выходит, что раз центр окружности делит высоту трапеции пополам (на 2 равных радиуса) и KM||CB. То по теореме Фалеса: CK=KE=a , BM=MS=b (KA=1-a MA=2-b) Выходит что KM-средняя линия трапеции. Пусть ES=f ,BC=x. И тут начинается красивая арифметика: Из условия вписаной окружности в трапецию получим: f+x=2(a+b) тк KM=(f+x)/2 то KM=a+b Откуда: PAKM=(1-a+2-b+(a+b))=3 ответ: PAKM=3
Треугольник симметричен данному треугольнику относительно точки (прямой), если каждая его вершина симметрична соответствующей вершине данного треугольника относительно этой точки (прямой). Точка, симметричная данной точке (х; у) относительно: - начала координат имеет вид (-х; -у) - оси х имеет вид (х; -у) - оси у имеет вид (-х; у)
O-центр вписанной окружности (точка сечения биссектрис)
Проведем отрезок ES-параллельный основанию CB и касающийся окружности.
ECSB-трапеция ,в которую вписана окружность. Причем выходит, что раз центр окружности делит высоту трапеции пополам (на 2 равных радиуса)
и KM||CB. То по теореме Фалеса: CK=KE=a , BM=MS=b (KA=1-a MA=2-b)
Выходит что KM-средняя линия трапеции.
Пусть ES=f ,BC=x.
И тут начинается красивая арифметика:
Из условия вписаной окружности в трапецию получим:
f+x=2(a+b)
тк KM=(f+x)/2
то KM=a+b
Откуда: PAKM=(1-a+2-b+(a+b))=3
ответ: PAKM=3
Точка, симметричная данной точке (х; у) относительно:
- начала координат имеет вид (-х; -у)
- оси х имеет вид (х; -у)
- оси у имеет вид (-х; у)
Дано: А(0; 1); В(2; 1); С(-2; 3)
Искомые треугольники имеют вершины:
1) А₁(0; -1); В₁(-2; -1); С₁(2; -3)
2) А₂(0; -1); В₂(2; -1); С₂(-2; -3)
3) А₃(0; 1); В₃(-2; 1); С₃(2; 3)