Начертить прямую произвольной длины.
С циркуля и линейки возвести перпендикуляр, равный данной высоте.
( Это одно из простейших построений, Вы наверняка умеете его делать)
Обозначить основание перпендикуляра Н, а свободный конец - В. Это вершина треугольника.
Раствором циркуля, равным длине одной из сторон, из В, как из центра, провести полуокружность до пересечения с первой прямой.
Точку пересечения обозначить А.
Соединив А и В, получим сторонуАВ.
Точно так же отложить вторую сторону раствором циркуля, равным ее длине.
Обозначить точку пересечения дуги с прямой С и соединить с В.
Можно несколько иначе построить вторую сторону.
От А отложить длину второй известной стороны.
Свободный конец обозначить С.
Соединив С и В, получим сторону ВС.
Треугольник по двум сторонам и высоте построен.
Подробнее - на -
FC- перпендикуляр к плоскости трапеции, следовательно, перпендикулярен любой прямой, лежащей в плоскости трапеции. Угол FCA=90°=>
∆ FCA - прямоугольный треугольник, гипотенуза FA которого и есть искомое расстояние.
Рассмотрим трапецию АВСD. Т.к. углы А и В прямые, а ВD - биссектриса прямого угла, в ∆ АВD ∠АВD=∠BDA=45° и ∆ ABD- равнобедренный. AD=AB=24 см.
Высота СН║АВ и отсекает от трапеции прямоугольный∆ CHD, в котором катет СН=АВ=24 см, а длина катета DH, найденная по т.Пифагора, равна 7 см.
Тогда ВС=АН=24-7=17 см.
Из ∆ АВС по т.Пифагора
АС²=FD²+DC²=√(576+289=865
Из ∆ FСA по т.Пифагора AF=√(FC²+AC²)=√(735+865)=40 см - это ответ.
Начертить прямую произвольной длины.
С циркуля и линейки возвести перпендикуляр, равный данной высоте.
( Это одно из простейших построений, Вы наверняка умеете его делать)
Обозначить основание перпендикуляра Н, а свободный конец - В. Это вершина треугольника.
Раствором циркуля, равным длине одной из сторон, из В, как из центра, провести полуокружность до пересечения с первой прямой.
Точку пересечения обозначить А.
Соединив А и В, получим сторонуАВ.
Точно так же отложить вторую сторону раствором циркуля, равным ее длине.
Обозначить точку пересечения дуги с прямой С и соединить с В.
Можно несколько иначе построить вторую сторону.
От А отложить длину второй известной стороны.
Свободный конец обозначить С.
Соединив С и В, получим сторону ВС.
Треугольник по двум сторонам и высоте построен.
Подробнее - на -
FC- перпендикуляр к плоскости трапеции, следовательно, перпендикулярен любой прямой, лежащей в плоскости трапеции. Угол FCA=90°=>
∆ FCA - прямоугольный треугольник, гипотенуза FA которого и есть искомое расстояние.
Рассмотрим трапецию АВСD. Т.к. углы А и В прямые, а ВD - биссектриса прямого угла, в ∆ АВD ∠АВD=∠BDA=45° и ∆ ABD- равнобедренный. AD=AB=24 см.
Высота СН║АВ и отсекает от трапеции прямоугольный∆ CHD, в котором катет СН=АВ=24 см, а длина катета DH, найденная по т.Пифагора, равна 7 см.
Тогда ВС=АН=24-7=17 см.
Из ∆ АВС по т.Пифагора
АС²=FD²+DC²=√(576+289=865
Из ∆ FСA по т.Пифагора AF=√(FC²+AC²)=√(735+865)=40 см - это ответ.