3)Раз все углы одинаковы - то и все стороны одинаковы, значит многоугольник правильный.
Угол правильного мн-ника рассчитывается по интересной формуле Alpha = (180*n - 360) / n = 180 - 360 / n Здесь n - это количество сторон, которое нам надо узнать 135 = 180 - 360/n 360/n = 180 - 135 = 45 n = 360/45 = 8
4)
пусть (х) см приходится на 1 часть, тогда (7х) см-1 сторона (меньшая) (8х) см-2 сторона (9х) см-3сторона (10х) см-4 сторона. Зная, что периметр равен 68 см, составим и решим уравнение: 7х+8х+9х+10х=6834х=68х=22см проходится на 1 часть2*7=14(см) -меньшая сторонаответ: 14сиответ: 14 см
3)7*2=14 см - меньшая сторона
5)УсловиеВ выпуклом четырехугольнике ABCD отрезок, соединяющий середины сторон AB и CD равен 1. Прямые BC и AD перпендикулярны. Найдите отрезок, соединяющий середины диагоналей AC и BD. Скрыть с вершинами в серединах AB, AC, CB и BD - прямоугольник. РешениеПусть K и M - середины сторон соответственно AB и CD четырехугольника ABCD, а N и L - середины его диагоналей соответственно AC и BD. Тогда KLMN - параллелограмм, а т. к. KN || BC, KL || AD и BC AD, то он - прямоугольник. Следовательно, NL = KM = 1. ответ1.
6)В выпуклом многоугольнике сумма дополнений углов до развернутого равна 360°. В данном случае для первых пяти углов она равна 40 * 5 = 200°. Остается 160°. Это число нельзя представить даже в виде двух слагаемых, каждое из которых > 90° (если остальные углы острые, то дополнительные >90°). Поэтому к пяти имеющимся углам можно добавить только один. а данный многоугольник - шестиугольник
Найдем второй катет первого треугольника. Теорема Пифагора, квадрат гипотенузы равен сумме квадратов катетов
a²=5²-4²
a²=25-16
a²=9
a=√9
a=3
Второй катет 3
Сумма внутренних углов треугольника 180°.
У первого треугольника один угол 90°, второй 53°. Найдем меньший угол первого треугольника.
180°-90°-53°=37°.
Теперь найдем гипотенузу второго треугольника по теореме Пифагора.
c²=24²+18²
c²=576+324
c²=900
c=√900
c=30
Разделим все стороны второго на соответственные (больший делим на большую сторону, меньший на меньшую и т.д.) стороны первого.
Так как они все пропорциональны (признак подобия треугольников), эти два треугольника подобные, то есть углы одинаковые. Следовательно, меньший угол второго треугольника тоже 37°.
2.
Найдем катет первого треугольника по теореме Пифагора
a²=10²-8²
a²=100-64
a²=36
a=√36
a=6
Во втором треугольнике найдем гипотенузу по той же теореме.
c²=12²+16²
c²=144+256
c²=400
c=√400
c=20
Разделим соответственные стороны второго на первый:
Все стороны пропорциональны, значит они подобные. Меньший угол второго треугольника 36°.
1)Сумма внешних углов не зависит от n и равна 2π. Следовательно внешний угол правильного девятиугольника равен 360°:9=40°
2)формула суммы внутренних углов выпуклого мн-ка 180*(н-2), где н число сторон
решается уравнение: 2520=180(н-2) 18н-36 =252 18н=252+36 н=(252+36):18
3)Раз все углы одинаковы - то и все стороны одинаковы, значит многоугольник правильный.
Угол правильного мн-ника рассчитывается по интересной формуле Alpha = (180*n - 360) / n = 180 - 360 / n Здесь n - это количество сторон, которое нам надо узнать 135 = 180 - 360/n 360/n = 180 - 135 = 45 n = 360/45 = 8
4)
пусть (х) см приходится на 1 часть, тогда (7х) см-1 сторона (меньшая) (8х) см-2 сторона (9х) см-3сторона (10х) см-4 сторона. Зная, что периметр равен 68 см, составим и решим уравнение: 7х+8х+9х+10х=6834х=68х=22см проходится на 1 часть2*7=14(см) -меньшая сторонаответ: 14сиответ: 14 см
3)7*2=14 см - меньшая сторона
5)УсловиеВ выпуклом четырехугольнике ABCD отрезок, соединяющий середины сторон AB и CD равен 1. Прямые BC и AD перпендикулярны. Найдите отрезок, соединяющий середины диагоналей AC и BD. Скрыть с вершинами в серединах AB, AC, CB и BD - прямоугольник. РешениеПусть K и M - середины сторон соответственно AB и CD четырехугольника ABCD, а N и L - середины его диагоналей соответственно AC и BD. Тогда KLMN - параллелограмм, а т. к. KN || BC, KL || AD и BC AD, то он - прямоугольник. Следовательно, NL = KM = 1. ответ1.
6)В выпуклом многоугольнике сумма дополнений углов до развернутого равна 360°. В данном случае для первых пяти углов она равна 40 * 5 = 200°. Остается 160°. Это число нельзя представить даже в виде двух слагаемых, каждое из которых > 90° (если остальные углы острые, то дополнительные >90°). Поэтому к пяти имеющимся углам можно добавить только один. а данный многоугольник - шестиугольник
Объяснение:
1.
Найдем второй катет первого треугольника. Теорема Пифагора, квадрат гипотенузы равен сумме квадратов катетов
a²=5²-4²
a²=25-16
a²=9
a=√9
a=3
Второй катет 3
Сумма внутренних углов треугольника 180°.
У первого треугольника один угол 90°, второй 53°. Найдем меньший угол первого треугольника.
180°-90°-53°=37°.
Теперь найдем гипотенузу второго треугольника по теореме Пифагора.
c²=24²+18²
c²=576+324
c²=900
c=√900
c=30
Разделим все стороны второго на соответственные (больший делим на большую сторону, меньший на меньшую и т.д.) стороны первого.
Так как они все пропорциональны (признак подобия треугольников), эти два треугольника подобные, то есть углы одинаковые. Следовательно, меньший угол второго треугольника тоже 37°.
2.
Найдем катет первого треугольника по теореме Пифагора
a²=10²-8²
a²=100-64
a²=36
a=√36
a=6
Во втором треугольнике найдем гипотенузу по той же теореме.
c²=12²+16²
c²=144+256
c²=400
c=√400
c=20
Разделим соответственные стороны второго на первый:
Все стороны пропорциональны, значит они подобные. Меньший угол второго треугольника 36°.