Трикутник ABC і прямокутник ABMN мають спільну сторону AB і лежать у різних площиназ. Через сторону MN і точку K - середину відрізка AC - проведено площину, яка перетинае BC в точці L.
а) Доведіть, що прямі AB і KL паралельні.
б) Знайдіть KL, якщо AB = 7см.
в) Визначте вид чотирикутника NKLM.
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
ответ:1056+1584√3 (см²)
Объяснение: 1)Пусть параллелограмм АВСД-нижнее основание призмы,А₁В₁С₁Д₁-верхнее основание; ∠А=30°, тогда ∠Д=180°-30°=150°. 2)Боковая поверхность призмы S= P·h, P= 2·(АД+СД)= 2( 16+24√3)=32+48√3. 3)Вычислим большую диагональ основания АС по теореме косинусов из ΔАДС: АС²= АД²+СД²- 2·АС·СД·CosД= 16²+(24√3)² - 2·16·24√3·Cos150°= 256+1728 - 2·16·24√3· (-Cos30°)=256+1728 + 2·16·24√3· √3/2 =256+1728 +1152=3136, ⇒АС = √3136= 56. 4)Рассмотрим прямоугольный треугольник АА₁С, по условию большая диагональ призмы А₁С=65 см.⇒h²= AA₁²= А₁С²- AC²65²-56²= 1089, h=√1089=33 (cм) 5) Боковая поверхность призмы S= P·h =(32+48√3) P= 2·(АД+СД)= 2( 16+24√3)=(32+48√3)· 33 =1056+1584√3 (см²)