№1) Основание прямой призмы -прямоугольный треугольник с гипотенузой 10 см и острым углом 30°. Диагональ боковой грани ,содержащей катет ,противолежащий данному углу ,равна 13 см . Найдите объём призмы. Катет, противолежащий углу 30°, равен половине гипотенузы ВС AB=10:2=5 см Диагональ боковой грани - гипотенуза прямоугольного треугольника с катетами АВ=5 и АА1. Считать не буду, т.к. очевидно, что стороны треугольника АВА1 составляют тройку Пифагора 13,12,5, и , т.к. ВА=5, то высота АА1=12. ( можете по т.Пифагора вычислить с тем же результатом) V=S(ABC)*h S=AB*AC:2 AC= ВС*sin(60°)=5√3 V=12*5√3=60√3 №2) Образующая конуса равна 5 см, а площадь его осевого сечения - 12 см² . Найдите полную поверхность и объём конуса, если его радиус меньше высоты.
Для ответа на вопрос задачи нужно найти радиус и высоту. Осевое сечение конуса - равнобедренный треугольник. Высота конуса делит этот треугольник на 2 прямоугольных, каждый из которых, судя по гипотенузе (образующей конуса) и площади сечения, может быть египетским. Тогда радиус будет 3, высота 4 (радиус меньше высоты по условию) Проверим: Площадь осевого сечения 12, площадь треугольника АВС=6*4:2=12 Следовательно, высота =4, радиус=3. Полная поверхность = площадь боковой поверхности +площадь основания. S полн=πrl+πr² Sполн=π3*5+π9=24π V=πr²h:3=π9*4:3=12π ------------ Если требуется обязательное нахождение радиуса путем вычислений, то с формулы площади треугольника и теоремы Пифагора нужно составить систему уравнений: |hr=12 |h²+r²=25 домножив обе части первого уравнения на 2 и сложив оба уравнения, получим: h²+2hr+r²=25+24 (h+r)²=49 (h+r)=√49 h+r=7 h=7-r h²+r²=25 (7-r)²+r²=25 из получившегося квадратного уравнения 2r²-14r+24=0 корни равны 3 и 4, 3- радиус, 4 -высота конуса. --------------- Подробное решение третьей задачи есть на Сервисе Школьные знания, его нетрудно найти. ---------------- [email protected]
Пусть ABCD - ромб со стороной 18 (см). Диагональ AC больше диагонали BD на 4 (см) Пусть диагональ AC= Х, тогда диагональ BD= Х - 4 Диагонали ромба пересекаются под прямым углом и точкой пересечения (О) делятся пополам⇒ AO = AC / 2 = x / 2 BO = BD / 2 = (х - 4) / 2 В прямоугольном треугольнике AOB: AO и BO - катеты, AB - гипотенуза. По теореме Пифагора: AO² + BO² = AB²
Основание прямой призмы -прямоугольный треугольник с гипотенузой 10 см и острым углом 30°. Диагональ боковой грани ,содержащей катет ,противолежащий данному углу ,равна 13 см . Найдите объём призмы.
Катет, противолежащий углу 30°, равен половине гипотенузы ВС
AB=10:2=5 см
Диагональ боковой грани - гипотенуза прямоугольного треугольника с катетами
АВ=5 и АА1. Считать не буду, т.к. очевидно, что стороны треугольника АВА1 составляют тройку Пифагора 13,12,5, и , т.к. ВА=5, то высота АА1=12. ( можете по т.Пифагора вычислить с тем же результатом)
V=S(ABC)*h
S=AB*AC:2
AC= ВС*sin(60°)=5√3
V=12*5√3=60√3
№2)
Образующая конуса равна 5 см, а площадь его осевого сечения - 12 см² . Найдите полную поверхность и объём конуса, если его радиус меньше высоты.
Для ответа на вопрос задачи нужно найти радиус и высоту.
Осевое сечение конуса - равнобедренный треугольник.
Высота конуса делит этот треугольник на 2 прямоугольных, каждый из которых, судя по гипотенузе (образующей конуса) и площади сечения, может быть египетским.
Тогда радиус будет 3, высота 4 (радиус меньше высоты по условию)
Проверим:
Площадь осевого сечения 12,
площадь треугольника АВС=6*4:2=12
Следовательно, высота =4, радиус=3.
Полная поверхность = площадь боковой поверхности +площадь основания.
S полн=πrl+πr²
Sполн=π3*5+π9=24π
V=πr²h:3=π9*4:3=12π
------------
Если требуется обязательное нахождение радиуса путем вычислений, то с формулы площади треугольника и теоремы Пифагора нужно составить систему уравнений:
|hr=12
|h²+r²=25
домножив обе части первого уравнения на 2 и сложив оба уравнения, получим:
h²+2hr+r²=25+24
(h+r)²=49
(h+r)=√49
h+r=7
h=7-r
h²+r²=25
(7-r)²+r²=25
из получившегося квадратного уравнения
2r²-14r+24=0 корни равны 3 и 4, 3- радиус, 4 -высота конуса.
---------------
Подробное решение третьей задачи есть на Сервисе Школьные знания, его нетрудно найти.
----------------
[email protected]
Диагональ AC больше диагонали BD на 4 (см)
Пусть диагональ AC= Х, тогда диагональ BD= Х - 4
Диагонали ромба пересекаются под прямым углом и точкой пересечения (О) делятся пополам⇒ AO = AC / 2 = x / 2
BO = BD / 2 = (х - 4) / 2
В прямоугольном треугольнике AOB: AO и BO - катеты, AB - гипотенуза.
По теореме Пифагора:
AO² + BO² = AB²
x - 4
(x / 2)² + ()² = 18²
2
(x - 4)²
x²/4 + = 324
4
x² + x² - 8x + 16
= 324
4
2x² - 8x + 16 = 1296
x² - 4x + 8 = 648
x² - 4x - 640 = 0
D= b² - 4ac
D = 16 - 4 * 1 * (-640) = 16 + 2560 = 2576 >0 ⇒ уравнение имеет 2 корня
√D = √2576 = √(7*23*16) = 4√161
x₁ = (4 - 4√161) / 2 < 0 ⇒ не является искомой величиной, т.к.диагональ не может иметь отрицательную длину
x₂ = (4 + 4√161) / 2 = 2 + 2√161
Длина диагонали AC= 2+ 2√161 = 2√161 + 2 (cм)
Тогда длина диагонали BD = 2 + 2√161 - 4 = 2√161 - 2 (cм)
Проверяем по теореме Пифагора
(1+ √161)² + (√161 - 1)² = 18²
1 + 2√161 + 161 + 161 - 2√161 + 1 = 324
324 = 324
Площадь ромба равна половине произведения его диагоналей
S = 1/2 * AC * BD
S= 1/2 * (2√161 + 2) * (2√161 - 2) = 1/2 * (4*161 - 4) = 1/2 * 640 = 320 (cм²)