ответ: задание 1 практическое, возьмите циркуль и на линейке расположите ножки циркуля так, чтобы расстояние между ними составляло 1,5см и начертите окружность.
Объяснение: задание 2
В прямоугольном треугольнике сумма острых углов составляет 90°. Пусть один из углов будет х, тогда второй угол будет х+20. Составим уравнение:
х+х+20=90
2х=90-20
2х=70
х=70÷2
х=35; 1-й угол =35°, тогда 2-й угол будет 35+20=65°; 2-й угол =65°
Задание 3
Радиус окружности, проведённый к касательной образует с ней прямой угол 90°, поэтому угол ОРМ=90°. Зная что угол КРМ=25°, найдём угол РОК:
Угол РОК=90-25=65°; угол РОК=65°
ЗАДАНИЕ 4
Рассмотрим ∆АСО и ВДО. У них:
1) СД и АВ пересекаются и при пересечении образуют углы АОС и ВОД, которые равны между собой
2 СД и АВ - диаметры 2-разных окружностей, которые пересекаются в её центре, значит, пересекаясь в точке О, они делятся в равных частях, которые соответствуют их радиусам. Поэтому СО=ДО, АО= ОВ.
Эти треугольники равны по двум сторонам и углу между ними
В данном случае предпологается, что линейка без делений. Т.е. просто инструмент для проведения линий.
Берём циркуль и выставляем ножки циркуля на расстояние чуть больше середины отрезка (примерно 1-2 см). Проводим окружность с центром в одном конце отрезка и другую окружность с центром в другом конце отрезка.
Поскольку окружности одинаковые, то пересечения будут симметричные.
Дальше линейкой соединяем точки пересечения окружностей. Полученный отрезок будет перпендикуляерн первоначальному и бедут делить его пополам.
На рисунке не 43 мм, но суть метода это не меняет.
ответ: задание 1 практическое, возьмите циркуль и на линейке расположите ножки циркуля так, чтобы расстояние между ними составляло 1,5см и начертите окружность.
Объяснение: задание 2
В прямоугольном треугольнике сумма острых углов составляет 90°. Пусть один из углов будет х, тогда второй угол будет х+20. Составим уравнение:
х+х+20=90
2х=90-20
2х=70
х=70÷2
х=35; 1-й угол =35°, тогда 2-й угол будет 35+20=65°; 2-й угол =65°
Задание 3
Радиус окружности, проведённый к касательной образует с ней прямой угол 90°, поэтому угол ОРМ=90°. Зная что угол КРМ=25°, найдём угол РОК:
Угол РОК=90-25=65°; угол РОК=65°
ЗАДАНИЕ 4
Рассмотрим ∆АСО и ВДО. У них:
1) СД и АВ пересекаются и при пересечении образуют углы АОС и ВОД, которые равны между собой
2 СД и АВ - диаметры 2-разных окружностей, которые пересекаются в её центре, значит, пересекаясь в точке О, они делятся в равных частях, которые соответствуют их радиусам. Поэтому СО=ДО, АО= ОВ.
Эти треугольники равны по двум сторонам и углу между ними
См. рисунок и объяснения.
Объяснение:
В данном случае предпологается, что линейка без делений. Т.е. просто инструмент для проведения линий.
Берём циркуль и выставляем ножки циркуля на расстояние чуть больше середины отрезка (примерно 1-2 см). Проводим окружность с центром в одном конце отрезка и другую окружность с центром в другом конце отрезка.
Поскольку окружности одинаковые, то пересечения будут симметричные.
Дальше линейкой соединяем точки пересечения окружностей. Полученный отрезок будет перпендикуляерн первоначальному и бедут делить его пополам.
На рисунке не 43 мм, но суть метода это не меняет.