(косинус в квадрате + синус в квадрате равно единице)
поясню саму формулу:
если мы начертим окружность радиусом 1, и на окружности возьмём ЛЮБУЮ точку, то cos - это X этой точки, а sin это Y.
если точку назовём T, то угол XOT (0 - середина окружности, центр координат), X - точка на оси Х, справа от О.
Таким образом выражение X^2 + Y^2 - это радиус в квадрате твоей окружности. Мы взяли единичную окружность, значит x^2+y^2 = 1, так как x это косинус, а у синус:
ответ ни в случае а, ни в случае б равенства одновременно выполнятся не могут.
P.S. во втором случае это было очевидно без рассчетов. Там где самая правая точка окружности (x = 1) высота окружности в точности равна нулю.А максимальна высота (sin) ровно в центре, там где x = 0 (сos = 0)
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
Есть такая формула:
cos^2(x) + sin^2(x) = 1;
(косинус в квадрате + синус в квадрате равно единице)
поясню саму формулу:
если мы начертим окружность радиусом 1, и на окружности возьмём ЛЮБУЮ точку, то cos - это X этой точки, а sin это Y.
если точку назовём T, то угол XOT (0 - середина окружности, центр координат), X - точка на оси Х, справа от О.
Таким образом выражение X^2 + Y^2 - это радиус в квадрате твоей окружности. Мы взяли единичную окружность, значит x^2+y^2 = 1, так как x это косинус, а у синус:
cos^2 + sin^2 = 1
Теперь проверим твои точки:
а.) (3/4)^2 + (2/3)^2 = 9/16 + 4/9 = (к общему знаменателю) 81/144 + 64/144 = 145/144;
это не равно единице, значит невозможно.
б)(1)^2 + (-1)^2 = 2 - тоже невозможно.
ответ ни в случае а, ни в случае б равенства одновременно выполнятся не могут.
P.S. во втором случае это было очевидно без рассчетов. Там где самая правая точка окружности (x = 1) высота окружности в точности равна нулю.А максимальна высота (sin) ровно в центре, там где x = 0 (сos = 0)
Задавай вопросы если что-то непонятно
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.