Все ребра данного нам тетраэдра разные. Но они все даны. Проведены медианы СМ - в треугольнике АВС и КМ - в треугольнике ВКА. Следовательно, чтобы найти длину медианы КМ, необходимо воспользоваться формулой для длины медианы. Формула: Ma=√(2b²+2c²-a²). Заметим, что АК и ВК - медианы в треугольниках ADC и BDC соответственно. Тогда АК=√(2АС²+2AD²-CD²) или АК=√(2b²+2a1²-c1²). BK= √(2BC²+2BD²-CD²) или BК=√(2a²+2b1²-c1²). И в треугольнике ВКА искомая медиана МК=√(2АК²+2BК²-АВ²). Подставим найденные значения: МК=√(2(2b²+2a1²-c1²)+2(2a²+2b1²-c1²)-с²) =√((4a²+4b²-с²)+4(a1²+b1²-c1²)).
Если начертим перпендикуляры из середины гипотенузы к катетам, то получим прямоугольник со сторонами 3 и 4. Одна из его диагоналей (диагональ = 5), проведенная к середине гипотенузы равна половине гипотенузы (по свойству радиуса описанной окружности прямоугольного треугольника). Получаем, гипотенуза = 10, и ее половина = 5.Так как имеем перпендикуляры, то получаем два треугольника с катетами 3,4. Учитывая изначально получившийся прямоугольник, катеты большого треугольника равны 6 и 8. Площадь треугольника = 6*8/2 = 24
Проведены медианы СМ - в треугольнике АВС и КМ - в треугольнике ВКА. Следовательно, чтобы найти длину медианы КМ, необходимо воспользоваться формулой для длины медианы.
Формула: Ma=√(2b²+2c²-a²).
Заметим, что АК и ВК - медианы в треугольниках ADC и BDC соответственно.
Тогда АК=√(2АС²+2AD²-CD²) или АК=√(2b²+2a1²-c1²).
BK= √(2BC²+2BD²-CD²) или BК=√(2a²+2b1²-c1²).
И в треугольнике ВКА искомая медиана МК=√(2АК²+2BК²-АВ²).
Подставим найденные значения:
МК=√(2(2b²+2a1²-c1²)+2(2a²+2b1²-c1²)-с²) =√((4a²+4b²-с²)+4(a1²+b1²-c1²)).