Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Дано:
α⊥β α∩β = k MN₁⊥NN₁
MM₁⊥k NN₁⊥k MM₁⊥M₁N
MM₁ = 18 см NN₁ = 11 см MN = 25 см
--------------------------------------------------------
Найти:
M₁N₁ - ?
1) ΔMM₁N - прямоугольный (NM₁⊥k, ∠MM₁N = 90°), следовательно используем по теореме Пифагора:
MN² = MM₁² + M₁N² ⇒ M₁N = √MN² - MM₁²
M₁N = √(25 см)² - (18 см)² = √625 см² - 324 см² = √301 см² = √301 см
2) Рассмотрим ΔM₁N₁N:
MM₁⊥k, и NN₁⊥k ⇒ NN₁⊥MN₁ |
∠M₁N₁N = 90° | ⇒ ΔM₁N₁N - прямоугольный.
NM₁² = NN₁² + N₁M₁² - теорема Пифагора, следовательно:
N₁M₁ = √NM₁² - NN₁² = √(√301 см)² - 11 см² = √301 см² - 121 см² = √180 см² = √36×5 см² = 6√5 см
ответ: N₁M₁ = 6√5 см
P.S. Рисунок показан внизу↓