И рассмотрим треугольник ABD в нем сумма углов должна быть равна 180°,т.е. \sf \angle \,ADB=180^\circ-25^\circ-50^\circ=105^\circ∠ADB=180∘−25∘−50∘=105∘
1)Сумма острых углов прямоугольного треугольника равна 90 градусам. Значит что бы найти один из острых углов надо от 90 отнять известный угол.
2)В равнобедренном прямоугольном треугольнике острые углы одинаковы,значит каждый угол будет по 45°
4)Сумма смежных углов равна 180°. Что бы найти неизвестный смежный угол нужно от 180 отнять известный угол. Из этого мы получаем,что угол СDA равен 110°. Что бы найти угол АСD мы вспоминаем что сумма острых углов в прямоугольном треугольнике равна 90°. От 90 отнимаем 70,получаем 20. Из чертежа мы видим что угол ACD и BCD одинаковы. Значит нужный нам ACD тоже 20°. Далее вспоминаем,что сумма всех углов треугольника равна 180°. От 180 отнимаем сумму двух известных нам углов. 180-(110+20)=50°
Биссектриса делит угол пополам, т.е. ∠ABD = ∠DBC; ∠BAD=∠DAC.
1) \sf \angle \,BAD=\frac{1}{2}\angle\, A=\frac{1}{2}\cdot 50^\circ=25^\circ∠BAD=21∠A=21⋅50∘=25∘
\sf \angle\, ABD=\frac{1}{2}\angle \, B=\frac{1}{2}\cdot100^\circ=50^\circ∠ABD=21∠B=21⋅100∘=50∘
И рассмотрим треугольник ABD в нем сумма углов должна быть равна 180°,т.е. \sf \angle \,ADB=180^\circ-25^\circ-50^\circ=105^\circ∠ADB=180∘−25∘−50∘=105∘
2) Аналогично с примером 1)
\sf \angle \,BAD=\frac{1}{2}\angle\, A=\frac{1}{2}\cdot \alpha=\frac{\alpha}{2}∠BAD=21∠A=21⋅α=2α
\sf \angle\, ABD=\frac{1}{2}\angle \, B=\frac{1}{2}\cdot\beta=\frac{\beta}{2}∠ABD=21∠B=21⋅β=2β
\sf \angle \,ADB=180^\circ-\frac{\alpha}{2}-\frac{\beta}{2}=180^\circ-\frac{1}{2}(\alpha+\beta)∠ADB=180∘−2α−2β=180∘−21(α+β)
3) Сумма углов треугольника ABC равна 180°, т.е. ∠A+∠B+∠C=180°.
∠A + ∠B + 130° = 180°
∠A + ∠B = 180° - 130°
∠A + ∠B = 50°
∠ADB = 180° - 1/2(∠A + ∠B) = 180° - 1/2 * 50° = 180° - 25° = 155°
4) Аналогично с примером 3)
∠A + ∠B + ∠C = 180°
∠A + ∠B + \gammaγ = 180°
\sf \angle\, A+\angle \, B=180^\circ-\gamma∠A+∠B=180∘−γ
Тогда
\begin{gathered}\sf \angle\, ADB=180^\circ-\frac{1}{2}(\angle \, A+\angle \, B)=180^\circ-\frac{1}{2}(180^\circ-\gamma)=180^\circ-90^\circ+\frac{\gamma}{2}=\\ \\ =90^\circ+\frac{\gamma}{2}\end{gathered}∠ADB=180∘−21(∠A+∠B)=180∘−21(180∘−γ)=180∘−90∘+2γ==90∘+2γ
1)53
2)45;45
4)50
Объяснение:
1)Сумма острых углов прямоугольного треугольника равна 90 градусам. Значит что бы найти один из острых углов надо от 90 отнять известный угол.
2)В равнобедренном прямоугольном треугольнике острые углы одинаковы,значит каждый угол будет по 45°
4)Сумма смежных углов равна 180°. Что бы найти неизвестный смежный угол нужно от 180 отнять известный угол. Из этого мы получаем,что угол СDA равен 110°. Что бы найти угол АСD мы вспоминаем что сумма острых углов в прямоугольном треугольнике равна 90°. От 90 отнимаем 70,получаем 20. Из чертежа мы видим что угол ACD и BCD одинаковы. Значит нужный нам ACD тоже 20°. Далее вспоминаем,что сумма всех углов треугольника равна 180°. От 180 отнимаем сумму двух известных нам углов. 180-(110+20)=50°