Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
Посмотрев данный видеоурок, все желающие смогут получить представление о теме «Задачи на второй признак равенства треугольников». В ходе этой лекции учащимся предстоит вспомнить, повторить и научиться применять все о втором признаке равенства треугольников. Учитель подробно разберет и решит несколько задач по этой теме.
Сначала вспомним, что две фигуры называются равными, если их можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников – по некоторым элементам.
Задачи на второй признак равенства треугольников
Треугольники
Посмотрев данный видеоурок, все желающие смогут получить представление о теме «Задачи на второй признак равенства треугольников». В ходе этой лекции учащимся предстоит вспомнить, повторить и научиться применять все о втором признаке равенства треугольников. Учитель подробно разберет и решит несколько задач по этой теме.
Сначала вспомним, что две фигуры называются равными, если их можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников – по некоторым элементам.
Объяснение: