Трикутник KAB і паралелограм ABCD мають спільну сторону AB і лежать у різних площинах. Через сторону CD і точку M - середину відрізка AK - проведено площину, яка перетинає KB у точці N
1) Доведіть,що MN||AB
2)Знайдіть AB, якщо MN=7см
3)Визначте вид чотирикутника MNCD
Дано: ΔАВС - прямокутний, ∠А=90°, АС=30 см, ВС=34 см; МК⊥ВС, ВМ=МС. Знайти МК.
Знайдемо АВ за теоремою Піфагора:
АВ=√(ВС²-АС²)=√(1156-900)=√256=16 см.
Проведемо ВК і розглянемо ΔВКС - рівнобедрений, тому що ВМ=СМ і МК⊥ВС, отже ВК=КС.
Нехай АК=х см, тоді КС=ВК=30-х см.
Знайдемо АК з ΔАВК - прямокутного:
АВ²=ВК²-АК²; 16² = (30-х)² - х²; 256=900-60х+х²-х²;
60х=900-256=644; х=10 11/15 см. АК=10 11/15 см, тоді
ВК = 30 - 10 11/15 = 19 4/15 = 289/15 см.
Знайдемо МК за теоремою Піфагора з ΔВМК, де ВМ=34:2=17 см.
МК²=ВК²-ВМ²=(289/15)² - 17² = (83521/225) - 289 = 18496/225.
МК=√(18496/225)=136/15=9 1\15 см.
Відповідь: 9 1/15 см.
Пусть АВ будет х, тогда АС 2х.
Р=АВ+ВС+АС, так как Р=18.4 по условию, то
18.4=х+х+2х
18,4= 4х
х=4,6
Следовательно АВ=ВС=4.6
Так как основание в два раза больше , то АС= 2*4,6=9,2
2)Дано равнобедренный треугольник АВС, угол ДВС внешний угол при вершине. По свойству внутреннего угла ДВС= угол А+угол С
Треугольник АВС равнобедренный по условию, тогда угол А= углу С= х
76=х+х
76=2х
х=76:2
х=38
угол А=углу С= 38
так как сумма углов треугольника 180, то угол В= 180-(А+С)
В=180-(38+38)=180-76=104
ответ: угол А= 38, угол С= 38, угол В= 104