Две окружности радиусов 9 см и 3 см касаются внешним образом в точке А,через которую проходит их общая секущая ВС.Найдите длину отрезка АВ если АС=5 см
Сделаем рисунок к задаче.
Соединим центры окружностей. Точка ихкасания находится на линии, осединяющей центры. У задачи есть два варианта решения. 1) Точка С находися на большей окружности. Тогда АВ является хордой меньшей окружности. Соединив центры окружности и концы хорд, образованных секущей ВС, получим подобные треугольники СОА и АоВ. Они подобны по трем углам. Углы при А - вертикальные и потому равны. Углы С и В - углы при основании равнобедренных треугольников с боковыми сторонами - радиусами каждой окружности, и потому они равны углам при А.
Так как углы при основаниях АС и АВ этих треугольников равны, их центральные углы также равны. Из подобия треугольников АОС и АоВ, коэффициент подобия которых 9:3=3, находим, что СА:АВ=3 СА:5=3 СА=15 см ------------------------- 2) Точка С находится на меньшей окружности. Тогда при том же коэффициенте подобия АВ:АС=3 5:АС=3 АС=5/3=1⅔ см
1)
сумма смежных углов = 180
пусть один из углов х,тогда другой - 8 х
х+8х = 180
9х = 180
х = 20
8х = 20 * 8 = 160
2) если я правильно поняла задание,то две прямые пересеклись,один угол 134,надо найти остальные три угла
сумма четырех углов = 360
два угла будут по 134(как вертикальные) | = > остальные два будут (360 - 92) : 2 = 46
3) < СОД = 50 , < ДОВ = 90 (т.к перпендикуляр) | = > , COВ = 50 + 90 = 140
угол АОВ и угол БОС - смежные,т е АОВ + ВОС = 180
АОБ + 140 = 180
АОВ = 180 - 140 = 40
Две окружности радиусов 9 см и 3 см касаются внешним образом в точке А,через которую проходит их общая секущая ВС.Найдите длину отрезка АВ если АС=5 см
Сделаем рисунок к задаче.
Соединим центры окружностей. Точка ихкасания находится на линии, осединяющей центры.
У задачи есть два варианта решения.
1) Точка С находися на большей окружности.
Тогда АВ является хордой меньшей окружности.
Соединив центры окружности и концы хорд, образованных секущей ВС,
получим подобные треугольники СОА и АоВ.
Они подобны по трем углам.
Углы при А - вертикальные и потому равны.
Углы С и В - углы при основании равнобедренных треугольников с боковыми сторонами - радиусами каждой окружности, и потому они равны углам при А.
Так как углы при основаниях АС и АВ этих треугольников равны, их центральные углы также равны.
Из подобия треугольников АОС и АоВ, коэффициент подобия которых
9:3=3, находим, что
СА:АВ=3
СА:5=3
СА=15 см
-------------------------
2) Точка С находится на меньшей окружности.
Тогда при том же коэффициенте подобия
АВ:АС=3
5:АС=3
АС=5/3=1⅔ см