В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Трикутники ABC i ACD лежать у різних площинах
(рис. 13.17), причому пряма BD перпендикулярна до площи-
ни ABC. Знайдіть двогранний кут, грані якого містять дані
трикутники, якщо ZACD = 90°, ВС = 6 см, CD = 12 см.​


Трикутники ABC i ACD лежать у різних площинах(рис. 13.17), причому пряма BD перпендикулярна до площи

Показать ответ
Ответ:
kotovak27
kotovak27
20.03.2023 02:29

Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.

Находим координаты точка А как точки пересечения сторон.

2x-y+5=0 |x(-2)   -4x+2y-10=0

x-2y+4=0               x-2y+4=0    

                           -3x    - 6 = 0,

                               x(A) = -6/3 = -2,

                               y(A) = 2x - 5 = 2*(-2) + 5 = 1.

Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).

х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,

у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.

Через точку С проводим прямую, параллельную АД.

Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.

Угловой коэффициент параллельной прямой сохраняется.

у(ВС) = (1/2)х + в. Подставим координаты точки С.

7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.

Уравнение ВС: у = (1/2)х + 5.

Находим координаты точки В кк точки пересечения АВ и ВС.

2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.

Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.

Находим длины сторон.

AB (c) = √((xB-xA)² + (yB-yA)²) =   20 4,472135955

BC (a) = √((xC-xB)² + (yC-yB)²) =   20 4,472135955

CD = √((xD-xC)² + (yD-yC)²) =   20 4,472135955

AD = √((xC-xA)² + (yC-yA)²) =   20 4,472135955 .

Находим длины диагоналей.

AC  = √((xC-xA)² + (yC-yA)²) =   72 8,485281374

BD = √((xD-xB)² + (yD-yB)²) =   8 2,828427125 .

Как видим, это ромб.

Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.

Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.


Две стороны параллелограмма заданы уравнениями 2x-y+5=0 и x-2y+4=0, его диагонали пересекаются в точ
0,0(0 оценок)
Ответ:
NeoBest1
NeoBest1
27.05.2020 02:29
Используем формулу длины биссектрисы:
L= \sqrt{AB*BC-AD*DC}.
Обозначим АВ=с, ВС=а.
Возведём в квадрат:
L^2=a*c-3*4
Отсюда а*с=36+12=48         (1).
Биссектриса делит сторону АС пропорционально боковым сторонам.
3/с = 4/а
или с = (3/4)*а.
Подставим в уравнение (1):
а*((3/4)*а) = 48
а² =(48*4) / 3 = 64
а = √64 = 8.
с = (3*8) / 4 =6.
Находим радиус окружности, вписанной в треугольник АВС:
r= \sqrt{ \frac{(p-a)(p-b)(p-c)}{p} } = \sqrt{ \frac{(10.5-8)(10.5-7)(10.5-6)}{10.5} } =1,936492.
Аналогично находим радиус окружности, вписанной в треугольник 
ДВС: r₁=1,290994.
Разность r - r₁ = 0,645498.
По теореме косинусов находим величину угла С:
C=arccos \frac{a^2+b^2-c^2}{2ab} =arccos \frac{8^2+7^2-6^2}{2*8*7} =arccos 0,6875.
С =  0.812756 радиан = 46.56746°.
Центры окружностей с радиусами r и r₁ лежат на биссектрисе угла С.
Тангенс угла С/2 = tg(46.56746 / 2) = tg  23.28373° = 0,43033.
Тогда длина отрезка КМ равна:
КМ = (r-r₁) / tg(C/2) = 0,645498 / 0,43033 = 1,5.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота