Тузудын бойында AB = 3 см, BC = 5 см , CD = 4 см болатындай тизбектелген уш кесинди орналыстырлган . AB жане CD кесинделридн орта нуктерелернин аракашыктыгын табындар
1 доказываешь равенство треугольников AMD и CNB, например (по первому признаку равенства), отсюда равенство МD и NB. из того же равенства (треугольников) получаешь равные углы из которых следует параллельность этих сторон. По признаку парал. получаешь доказательство )) (2 стороны равны и параллельны) Если был доказан признак, что если у выпуклого 4угольника диагонали пересекаются посередине, то это параллелограмм - то еще проще ) одна диагональ уже есть. И она пересекается с другой в своей середине и в ее середине (очень просто доказывается)
1 доказываешь равенство треугольников AMD и CNB, например (по первому признаку равенства), отсюда равенство МD и NB. из того же равенства (треугольников) получаешь равные углы из которых следует параллельность этих сторон. По признаку парал. получаешь доказательство )) (2 стороны равны и параллельны)
Если был доказан признак, что если у выпуклого 4угольника диагонали пересекаются посередине, то это параллелограмм - то еще проще ) одна диагональ уже есть. И она пересекается с другой в своей середине и в ее середине (очень просто доказывается)
∠BEA = ∠EAD, как внутренние накрест лежащие углы при BE║AD и секущей AE, ∠BEA = 30°.
Сумма углов треугольника равна 180°.В ΔABE:
∠BAE = 180°-∠ABE-∠BEA = 180°-100°-30° = 50°;
По теореме синусов:
дм
BC = 2·BE = 20sin50° дм т.к. E - середина BC.
P(ABCD) = AB+BC+CD+AD = 2·AB+2·BC = 10+40sin50° дм.
Пусть AH⊥BC и H∈BC. Тогда ΔAHB - прямоугольный.
∠ABH = 180°-∠ABE т.к. сумма смежных углов равна 180°, ∠ABH = 180°-100° = 80°.
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.AH = 5sin80° дм
Площадь параллелограмма равна произведению его стороны и высоты проведённой к этой стороне.AH - высота параллелограмма ABCD проведённая к стороне BC.
S(ABCD) = BC·AH = 20sin50°·5sin80° = 100sin50°·sin80° дм².
ответ: 10+40sin50° дм; 100sin50°·sin80° дм².