Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
Вопрос не требует решения. Эту информацию легко можно найти самостоятельно в интернете, учебнике или справочной литературе. Таким вопросом Вы провоцируете отвечающего копировать информацию из интернета или учебника, за что он может получить предупреждение. Теорема: "Величина угла, образованного касательной и секущей (хордой), проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами". Попробуем ответить на вопрос своими словами. Точка В - точка касания, следовательно <ABD=90° (свойство радиуса к точке касания). Угол АВС - вписанный, опирающийся на дугу АС. Дуга АС=2*<ABC (свойство вписанного угла). Дуга ВСА=180°, так как АВ - диаметр. Дуга ВС=180°- дуга АС = 180°-2*<ABC=2*(90°-<ABC) (1). <DBC=<ABD-<ABC = 90°-<ABC, то есть из (1) угол <DBC=(1/2) дуги ВС, что и требовалось доказать.
Теорема: "Величина угла, образованного касательной и секущей (хордой), проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами".
Попробуем ответить на вопрос своими словами.
Точка В - точка касания, следовательно <ABD=90° (свойство радиуса к точке касания). Угол АВС - вписанный, опирающийся на дугу АС.
Дуга АС=2*<ABC (свойство вписанного угла).
Дуга ВСА=180°, так как АВ - диаметр.
Дуга ВС=180°- дуга АС = 180°-2*<ABC=2*(90°-<ABC) (1).
<DBC=<ABD-<ABC = 90°-<ABC, то есть
из (1) угол <DBC=(1/2) дуги ВС, что и требовалось доказать.