S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Задача не стоит своих балов, имхо). Красный - высота. K и F - точки касания. AO - расстояние по условию. OF, OK - радиусы. Для очень придирчивых - вся основа решения, т.е. после введения углов, лежит в плоскости AS1S. Из треугольника AOF: a/2=sqrt6. Тогда a=2sqrt6. Это сторона основания. Тогда AH=2sqrt6*sin60*=3sqrt2 S1F=(3sqrt2)/3=sqrt2 OS1=1 угол AOS1=k угол AOK= l угол KOS=b cos(k)=OS1/AO=1/3 cos(l)=OK/AO=sqrt3/3 b=pi-arccosk-arccosl cosb=cos(pi-arccos(k)-arccos(l))= -cos(arccos(k)+arccos(l)) Есть формула подсчета этого: arccos(k)+arccos(l)=arccos(k*l-sqrt(1-k^2)*sqrt(1-l^2)), где k+l >0 Я не буду приводить расчеты, тут все подставляется. cos(b)=(4-sqrt3)/9 = OK/OS. Отсюда находится OS. Вся высота пирамиды = OS+OS1 = (4+8sqrt3)/(4-sqrt3). P.S. sqrt - квадратный корень из
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Красный - высота. K и F - точки касания. AO - расстояние по условию. OF, OK - радиусы. Для очень придирчивых - вся основа решения, т.е. после введения углов, лежит в плоскости AS1S. Из треугольника AOF: a/2=sqrt6. Тогда a=2sqrt6. Это сторона основания. Тогда AH=2sqrt6*sin60*=3sqrt2
S1F=(3sqrt2)/3=sqrt2
OS1=1
угол AOS1=k
угол AOK= l
угол KOS=b
cos(k)=OS1/AO=1/3
cos(l)=OK/AO=sqrt3/3
b=pi-arccosk-arccosl
cosb=cos(pi-arccos(k)-arccos(l))= -cos(arccos(k)+arccos(l))
Есть формула подсчета этого: arccos(k)+arccos(l)=arccos(k*l-sqrt(1-k^2)*sqrt(1-l^2)), где k+l >0
Я не буду приводить расчеты, тут все подставляется. cos(b)=(4-sqrt3)/9 = OK/OS. Отсюда находится OS. Вся высота пирамиды = OS+OS1 = (4+8sqrt3)/(4-sqrt3).
P.S. sqrt - квадратный корень из