У 2. 284. Докажите, что треугольник с вершинами А(-4; -1), В(2;-9) С(7; 1) - равнобедренный и найдите длину его биссектрисы, про- веденной к основанию.
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.
Пусть R, r -- радиусы двух окружностей, O₁, O₂ -- их центры.
1. Взаимное расположение двух окружностей
Выделяют три основных случая взаимного расположения окружностей:
Две окружности не имеют общих точек (не пересекаются)Две окружности имеют одну общую точку (касаются)Две окружности имеют две общие точки (пересекаются)
Также выделяют иногда четвёртый случай: совпадающие окружности (бесконечное множество общих точек).
2. В каком случае окружности имеют одну общую точку?
Окружности будут иметь одну общую точку, если:
Сумма их радиусов равна расстоянию между центрами (R + r = O₁O₂).Разность их радиусов равна расстоянию между центрами (R - r = O₁O₂).
3. Как называется общая точка двух окружностей?
Если окружности касаются в некоторой точке, то такая точка называется точкой касания.
Если пересекаются -- точкой пересечения.
4. Виды касаний двух окружностей
В пункте 2 было выделено два признака касания окружностей, откуда получается 2 вида касания:
Внешнее касание (R + r = O₁O₂)Внутреннее касание (R - r = O₁O₂)
5. Когда окружности пересекаются?
Окружности пересекаются, когда расстояние между центрами меньше суммы радиусов, но больше их разности: R - r < O₁O₂ < R + r
6. Концентрические окружности
Окружности, имеющие общий центр, называются концентрическими.
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.
Пусть R, r -- радиусы двух окружностей, O₁, O₂ -- их центры.
1. Взаимное расположение двух окружностей
Выделяют три основных случая взаимного расположения окружностей:
Две окружности не имеют общих точек (не пересекаются)Две окружности имеют одну общую точку (касаются)Две окружности имеют две общие точки (пересекаются)Также выделяют иногда четвёртый случай: совпадающие окружности (бесконечное множество общих точек).
2. В каком случае окружности имеют одну общую точку?
Окружности будут иметь одну общую точку, если:
Сумма их радиусов равна расстоянию между центрами (R + r = O₁O₂).Разность их радиусов равна расстоянию между центрами (R - r = O₁O₂).3. Как называется общая точка двух окружностей?
Если окружности касаются в некоторой точке, то такая точка называется точкой касания.
Если пересекаются -- точкой пересечения.
4. Виды касаний двух окружностей
В пункте 2 было выделено два признака касания окружностей, откуда получается 2 вида касания:
Внешнее касание (R + r = O₁O₂)Внутреннее касание (R - r = O₁O₂)5. Когда окружности пересекаются?
Окружности пересекаются, когда расстояние между центрами меньше суммы радиусов, но больше их разности: R - r < O₁O₂ < R + r
6. Концентрические окружности
Окружности, имеющие общий центр, называются концентрическими.