Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
1) Найдем радиус окружности, впсинной в треуг. МКР
r=S/p, где S - площать треуг. МКР, а р - полупериметр этого треуг.
Площадь треугольника найдем по формуле Герона
S=корень из (р (р-МК) (р-МР) (р-КР) )
p=(4+5+7)/2=8 cm
S=корень из (8(8-4)(8-5)(8-7))=корень из (8*4*3*1)=4 корня из 6.
r=(4 корня из 6) / 8 = (корень из 6) / 2.
2) Найдем радиус сферы по теореме Пифагора
R=корень из (r^2+h^2), где h - расстояние от центра сферы до центра окружности, вписанной в треугольник.
R=корень из (3+5)=корень из 8.
3) Объем сферы V=(4/3)pi*R^3
V=(4/3)pi*8 корней из 8 = (32/3)pi* корней из 8
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см