Треугольники Аа1В и Ав1В равны. У них общая сторона АВ, углы А и В равны, как у равнобедренного треугольника, стороны Ав1 и Ва1 равны. Из равенства этих треугольников имеем равенство углов в1ВА и а1АВ. Значит, треугольник АОВ равнобедренный. Угол в1ОА для него внешний. Он равен сумме двух внутренних не смежных с ним. Тогда углы ОАВ и ОВА равны по 30 градусов. Опускаем перпендикуляр из точки а1 на АВ. Получилась точка Д. Из треугольника Аа1Д АД=4,5, угол а1АВ равен 30, значит, Аа1 равна 4,5 разделить на косинус 30 = 4,5: (корень из 3 :2) = 3 корня из 3.
2) пусть АЕ=х тогда ЕС= 18-х. Биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, составляем пропорцию АВ:ВС=АЕ:ЕС, 14:10=х:(18-х). 10Х=252-14х, 24х=252, х=10,5. АЕ=10,5см, УС= 18- 10,5=7,5 см
3)треугольники АВС и АМН подобны. АВ:АМ=АС:АН. АМ=16-4=12 см, пусть НС=х, составляем пропорцию 16:12=(6+х):6 , 96+72+12х, 12х+24, х=2 , НС=2 см, АС=АН+НС=6+2=8 см.