У циліндрі на відстані 4 см від його осі паралельно їй проведено переріз, діагональ якого дорівнює 6√2. Обчислити об‘єм циліндра, якщо його радіус 5 см.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Хорды проведены из одной точки... можно провести радиусы (построить центральные углы, стягивающие эти хорды) получим два равносторонних треугольника: АОВ и АОС... два центральных угла по 60° образуют один центральный угол ВОС=120°, следовательно, градусная мера дуги ВАС = 120° вписанный угол ВАС опирается на оставшуюся часть окружности и равен половине градусной меры оставшейся части окружности: ∡ВАС = (360°-120°) / 2 = 120° (или иначе: четырехугольник ВАСО - ромб: все стороны равны, противоположные углы равны) треугольник ВАС -равнобедренный (по условию) ∡АВС = ∡АСВ = (180°-120°) / 2 = 30° (или короче: вписанный угол АВС опирается на хорду АС, равную радиусу, градусная мера дуги АС = 60°, вписанный угол равен 60°/2)
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
можно провести радиусы
(построить центральные углы, стягивающие эти хорды)
получим два равносторонних треугольника: АОВ и АОС...
два центральных угла по 60° образуют один центральный угол ВОС=120°,
следовательно, градусная мера дуги ВАС = 120°
вписанный угол ВАС опирается на оставшуюся часть окружности и равен половине градусной меры оставшейся части окружности:
∡ВАС = (360°-120°) / 2 = 120°
(или иначе: четырехугольник ВАСО - ромб: все стороны равны, противоположные углы равны)
треугольник ВАС -равнобедренный (по условию)
∡АВС = ∡АСВ = (180°-120°) / 2 = 30°
(или короче: вписанный угол АВС опирается на хорду АС, равную радиусу, градусная мера дуги АС = 60°, вписанный угол равен 60°/2)