У циліндрі паралельно осi проведена площина, що відтинає від кола основи дугу в 60°. Довжна осі 10 см, відстань від січної площини 2 см. Обчислити площу перерізy.
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Основные черты растительности тундры: отсутствие древесного яруса, большая роль низкорослых мелкодревесных долгоживущих, часто вечнозелёных растений – от кустарников и стлаников до стелющихся кустарничков и стланичков. Растут тундровые растения очень долго – у полярной ивы побеги удлиняются за год на 1–5 мм и дают только по 2–3 листа, а лишайники нарастают всего на 1–3 мм за год. Этим объясняется чрезвычайная ранимость тундр. Широко распространены травянистые многолетники (корневищные, кочкообразующие, подушковидные) с укороченными стеблями, кустарнички с деревянистыми стеблями: голубика, черника, брусника и карликовые ивы и берёзки. Двудольные травянистые растения имеют крупные, яркоокрашенные цветы, зацветают практически одновременно, превращая некоторые участки тундры в гигантские цветочные клумбы. Большинство тундровых видов растений характеризуется максимальной активностью в данной зоне, составляя арктический элемент флоры. Велико значение мхов и лишайников, образующих типичные для тундр сообщества с мелкодревесными растениями. Возраст накипных лишайников исчисляется сотнями и даже тысячами лет.
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2