По сути надо найти двугранный угол между треугольниками А1BC и АВС. Этот угол есть угол между высотами этих треугольников (которые также являются их медианами) . Обознач высоты как АМ и А1М. АМ можно найти по теореме Пифагора: СМ = 1 (половина ВС) => АМ = корень из (4 - 1) = корень из 3. Найдем высоту призмы, ака сторону АА1. Также по теореме Пифагора она равна корень из (5 - 4) = 1. угол А1АМ = 90 градусов, значит отношение стороны АА1 к АМ = tg(нужного угла) = tg(1/корень из 3) = 30 градусов.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
По сути надо найти двугранный угол между треугольниками А1BC и АВС. Этот угол есть угол между высотами этих треугольников (которые также являются их медианами) . Обознач высоты как АМ и А1М. АМ можно найти по теореме Пифагора: СМ = 1 (половина ВС) => АМ = корень из (4 - 1) = корень из 3. Найдем высоту призмы, ака сторону АА1. Также по теореме Пифагора она равна корень из (5 - 4) = 1. угол А1АМ = 90 градусов, значит отношение стороны АА1 к АМ = tg(нужного угла) = tg(1/корень из 3) = 30 градусов.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.