1. АВ=√(8²+(-6)²+10²)=10√2
алгоритм - от координат конца отрезка отняли координаты начала. результаты возвели в квадрат, сложили и извлекли корень квадратный из суммы.
2) х=1; у=-1;z=1
алгоритм: сложили соответствующие координаты и поделили каждую на два.
2. 1)АВ(9;-10;7), СВ(4;2;-3) алгоритм : от координат конца отняли координаты начала вектора.
2)IАВI=√(9²+(-10)²+7²)=√230
3) 2АВ+3СВ=2*(9;-10;7)+3(4;2;-3)=(30;-14;5)
2АВ-3СВ=2*(9;-10;7)-3(4;2;-3)=(60;-26;23)
4) IСВI=√(16+4+9)=√29; АВ*СВ/(IАВI*IСВI)=
(36-20-21)/(√230*√29)=-5/√6670≈-5/81.67-0.0612
3. а)-15х-48-27=0⇒х=75/(-15)=-5 скалярное произведение равно нулю.
б)х/(-15)= -4/12= 3/(-9) соответствующие координаты пропорциональны х=5
Рассмотрим треугольники ACP и BCH.
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
2) ∠C — общий
∠APC=∠BHC=90º (так как AP и BH — высоты (по условию)).
Сумма углов треугольника равна 180º .
В треугольнике ACP
∠CAP=180º — (∠APC+∠C)=180º — 90º — ∠C=90º — ∠C.
В треугольнике BCH
∠CBH=180º — (∠BHC+∠C)=180º — 90º — ∠C=90º — ∠C.
Отсюда,
3) ∠CAP=∠CBH.
Следовательно, треугольники ACP и BCH равны
(по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AP=BH.
Что и требовалось доказать.
1. АВ=√(8²+(-6)²+10²)=10√2
алгоритм - от координат конца отрезка отняли координаты начала. результаты возвели в квадрат, сложили и извлекли корень квадратный из суммы.
2) х=1; у=-1;z=1
алгоритм: сложили соответствующие координаты и поделили каждую на два.
2. 1)АВ(9;-10;7), СВ(4;2;-3) алгоритм : от координат конца отняли координаты начала вектора.
2)IАВI=√(9²+(-10)²+7²)=√230
3) 2АВ+3СВ=2*(9;-10;7)+3(4;2;-3)=(30;-14;5)
2АВ-3СВ=2*(9;-10;7)-3(4;2;-3)=(60;-26;23)
4) IСВI=√(16+4+9)=√29; АВ*СВ/(IАВI*IСВI)=
(36-20-21)/(√230*√29)=-5/√6670≈-5/81.67-0.0612
3. а)-15х-48-27=0⇒х=75/(-15)=-5 скалярное произведение равно нулю.
б)х/(-15)= -4/12= 3/(-9) соответствующие координаты пропорциональны х=5
Рассмотрим треугольники ACP и BCH.
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
2) ∠C — общий
∠APC=∠BHC=90º (так как AP и BH — высоты (по условию)).
Сумма углов треугольника равна 180º .
В треугольнике ACP
∠CAP=180º — (∠APC+∠C)=180º — 90º — ∠C=90º — ∠C.
В треугольнике BCH
∠CBH=180º — (∠BHC+∠C)=180º — 90º — ∠C=90º — ∠C.
Отсюда,
3) ∠CAP=∠CBH.
Следовательно, треугольники ACP и BCH равны
(по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AP=BH.
Что и требовалось доказать.