У колі з центром О і радіусом 10 см проведено хорду AB довжиною 16 см. Із центра кола до хорди проведено перпендикуляр, який перетинає хорду в точці E, а коло - у точці F. Знайдіть довжину відрізка EF.
В телах, "подобных" друг другу (то есть, когда одно получается из другого пропорциональным изменением масштабов), объём пропорционален кубу линейного размера.
Поэтому объем малого и большого конусов относятся, как (r/R)^3, а объем усеченного конуса составляет 1-(r/R)^3 от объема большого (у которого в основании R>r)
На самом деле, в этом очевидном решении легко навести "строгость".
Высоты малого и большого конусов пропорциональны радиусам, а площади - квадратам радиусов. Поэтому объем пропорционален радиусу в кубе.
Пусть точки касания второй внешней касательной N1 и M1. Рассмотрим трапецию NMM1N1. Все отрезки, соединяющие О с вершинами этой трапеции, являются биссектрисами углов (Это следует из равенства дуг, к примеру дуга ON = дуга ON1, поэтому угол ONM = угол ONN1, то есть ОN - биссектриса). В трапеции все биссетрисы пересекаются в точке О, поэтому в неё МОЖНО вписать окружность, поэтому суммы противоположных сторон равны, а АВ - средняя линяя в этой трапеции :))), поэтому она равна боковой строне этой (равнобедренной) трапеции, то есть АВ=MN :
МN находится элементарно из прямоугольного тр-ка MNK.
В телах, "подобных" друг другу (то есть, когда одно получается из другого пропорциональным изменением масштабов), объём пропорционален кубу линейного размера.
Поэтому объем малого и большого конусов относятся, как (r/R)^3, а объем усеченного конуса составляет 1-(r/R)^3 от объема большого (у которого в основании R>r)
На самом деле, в этом очевидном решении легко навести "строгость".
Высоты малого и большого конусов пропорциональны радиусам, а площади - квадратам радиусов. Поэтому объем пропорционален радиусу в кубе.
МN находится элементарно из прямоугольного тр-ка MNK.
ВСЁ