1) Напротив самой большой стороны лежит самый большой угол. Самая большая сторона - это АС. Она лежит напротив ∠В. Значит ∠В - наибольший. АВ - наименьшая сторона. Лежит напротив ∠С. Значит ∠С - наименьший.
2) Так как треугольник равнобедренный, то третья сторона равна 3 см или 8 см. Если эта сторона равна 3 см, то сумма двух боковых сторон равна 3+3=6 см<8см - основания треугольника. Это противоречит неравенству треугольника. Значит вторая боковая сторона равна только 8 см. Так как сумма боковых сторон равна 8+8=16см>3 см. Значит искомая сторона равна только 8 см.
3) По теореме о сумме углов в Евклидовой геометрии получаем
Дано:
KB ∩ AM = S.
AB = KM
AB || KM
Доказать:
S - середина KB и AM.
Решение.
ЕСЛИ ПРИ ПЕРЕСЕЧЕНИИ 2 ПРЯМЫХ СЕКУЩЕЙ НАКРЕСТ ЛЕЖАЩИЕ УГЛЫ РАВНЫ, ТО ПРЯМЫЕ ПАРАЛЛЕЛЬНЫ.Рассмотрим △KSM и △BSA:
AB = KM
Т.к. AB || KM => ∠B = ∠K т.к. они накрест лежащие.В данном случае, действует теорема, которая написана заглавными буквами вверху, только обратная:
ЕСЛИ ДВЕ ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ ПЕРЕСЕЧЕНЫ СЕКУЩЕЙ, ТО НАКРЕСТ ЛЕЖАЩИЕ УГЛЫ РАВНЫ
∠A = ∠M, т.к. они накрест лежащие.
=> △KSM = △ASB, по 2 признаку равенства треугольников.
Т.к. △KSM = △ASB => S - середина KB и AM
Ч.Т.Д.
1) ∠С - наименьший, ∠В - наибольший.
2) 8 см
3) ∠Р=63°
Объяснение:
1) Напротив самой большой стороны лежит самый большой угол. Самая большая сторона - это АС. Она лежит напротив ∠В. Значит ∠В - наибольший. АВ - наименьшая сторона. Лежит напротив ∠С. Значит ∠С - наименьший.
2) Так как треугольник равнобедренный, то третья сторона равна 3 см или 8 см. Если эта сторона равна 3 см, то сумма двух боковых сторон равна 3+3=6 см<8см - основания треугольника. Это противоречит неравенству треугольника. Значит вторая боковая сторона равна только 8 см. Так как сумма боковых сторон равна 8+8=16см>3 см. Значит искомая сторона равна только 8 см.
3) По теореме о сумме углов в Евклидовой геометрии получаем
∠М+∠Р+∠К=180°
90°+∠Р=27°=180°
∠Р=180°-90°-27°
∠Р=90°-27°
∠Р=63°