Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°.
=> ∠А = 30°
Т.к. АВ = ВС => ∆АВС - равнобедренный.
=> ∠С = ∠А = 30°
Сумма углов треугольника равна 180°
=> ∠В = 180 -(30 + 30) = 120°
Или можно было найти ∠В таким образом:
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠АВО = ∠СВО = 90 - 30 = 60° (если ∆АВС - равнобедренный, то BO является и медианой, и высотой, и биссектрисой.)
Также, если угол одного треугольника, равен углу другого треугольника, то последующие углы этих треугольников будут равны, так как сумма углов треугольника равна 180°
1). «Две прямые не пересекаются, если соответственные углы равны»? Верно
Если соответственные углы равны, прямые параллельны.
2). « Существует треугольник, один из углов которого равен разности двух других»? Верно
Это прямоугольный треугольник; угол А=90 градусов, угол С=А-В=90-В
3). «Если сторона и 2 угла одного треугольника равны стороне и 2-м углам другого треугольника, то треугольники равны»? неверно, такие треугольники подобны;
Если сторона и 2 прилегающих к ней угла одного треугольника равны стороне и
2-м прилегающим к ней углам другого треугольника, то треугольники равны
4). «В прямоугольном треугольнике сумма острых углов не меньше 90 градусов»? Верно
она равна 90
5). «Треугольник с двумя различными острыми внешними углами не существует»? Верно,
поскольку острый внешний угол означает, что смежный с ним угол треугольника
будет тупым, а у треугольника может быть только один тупой угол.
6). «В треугольнике РМЕ , ,сторона РЕ- наименьшая». что-то пропущено в условии вопроса;
если, например, угол М наименьший, то и сторона РЕ наименьшая, поскольку она
лежит напротив наименьшего угла.
В заданиях 7-9 поясните ответ.
7). В равнобедренном треугольнике один из углов равен 800 .Чему равны остальные углы?
сумма углов треуг 180. В равнобедренном треуг два одинаковых угла,
если они по 80, то третий равен 180-80-80=20; если же это угол при вершине,
то углы при основании равны (180-80)/2=50 градусов
8). В треугольнике одна из сторон равна 8 см, другая – 10 см. Какие целочисленные значения может принимать длина третьей стороны? сумма длин сторон треугольника всегда больше
длины третьей стороны, то есть третья сторона меньше 8+10=18,
и она может принимать любое целое значение, от 1 см по 17 см
9). В прямоугольном треугольнике наибольшая сторона МТ=39, МК=19,5. Чему равен
вопрос не сформулирован
2 часть
1). Внутри равностороннего треугольника АВС отмечена точка К, такая, что углы ВАК и ВСК равны 150. Найдите АКС. ( ) В условии что-то напутано, не могут ВАК и ВСК равнятья 150 градусов
2). Длины двух сторон равнобедренного треугольника равны соответственно 3 см и 1 см. Определите длину третьей стороны этого треугольника. ( ) В равнобедр треуг две одинаковых стороны. Если это стороны по 3 см, то такой треугольник существует, выполняется условие, что сумма двух сторон треуг больше его третьей стороны. Если бы 2 одинаковые стороны были бы по 1 см, то это условие не выполнится, 1+1<3, значит, такого треуг не существует. ответ: третья сторона длиной 3 см
3). В равнобедренном треугольнике с боковой стороной, равной 14 см и углом 1500 найдите высоту, проведенную к боковой стороне. ( )
4). Докажите, что любая сторона треугольника меньше суммы двух других сторон. ( )
не знаю, как у вас в учебнике, можно просто нарисовать
длинную сторону и "положить" на нее с каждого края отрезки, сумма которых равна
Дано:
∆АВС
∠О = 90°
АВ = ВС
АВ = 15,2 см
ВО = 7,6 см
Найти.
∠А; ∠В; ∠С.
Решение.
∆АВО и ∆СВО - прямоугольные (∠О = 90°)
Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°.
=> ∠А = 30°
Т.к. АВ = ВС => ∆АВС - равнобедренный.
=> ∠С = ∠А = 30°
Сумма углов треугольника равна 180°
=> ∠В = 180 -(30 + 30) = 120°
Или можно было найти ∠В таким образом:
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠АВО = ∠СВО = 90 - 30 = 60° (если ∆АВС - равнобедренный, то BO является и медианой, и высотой, и биссектрисой.)
Также, если угол одного треугольника, равен углу другого треугольника, то последующие углы этих треугольников будут равны, так как сумма углов треугольника равна 180°
Т.к. BD - биссектриса => ∠В = 60 + 60 = 120°
ответ: 120°; 30°; 30°.
Вариант 2.
1). «Две прямые не пересекаются, если соответственные углы равны»? Верно
Если соответственные углы равны, прямые параллельны.
2). « Существует треугольник, один из углов которого равен разности двух других»? Верно
Это прямоугольный треугольник; угол А=90 градусов, угол С=А-В=90-В
3). «Если сторона и 2 угла одного треугольника равны стороне и 2-м углам другого треугольника, то треугольники равны»? неверно, такие треугольники подобны;
Если сторона и 2 прилегающих к ней угла одного треугольника равны стороне и
2-м прилегающим к ней углам другого треугольника, то треугольники равны
4). «В прямоугольном треугольнике сумма острых углов не меньше 90 градусов»? Верно
она равна 90
5). «Треугольник с двумя различными острыми внешними углами не существует»? Верно,
поскольку острый внешний угол означает, что смежный с ним угол треугольника
будет тупым, а у треугольника может быть только один тупой угол.
6). «В треугольнике РМЕ , ,сторона РЕ- наименьшая». что-то пропущено в условии вопроса;
если, например, угол М наименьший, то и сторона РЕ наименьшая, поскольку она
лежит напротив наименьшего угла.
В заданиях 7-9 поясните ответ.
7). В равнобедренном треугольнике один из углов равен 800 .Чему равны остальные углы?
сумма углов треуг 180. В равнобедренном треуг два одинаковых угла,
если они по 80, то третий равен 180-80-80=20; если же это угол при вершине,
то углы при основании равны (180-80)/2=50 градусов
8). В треугольнике одна из сторон равна 8 см, другая – 10 см. Какие целочисленные значения может принимать длина третьей стороны? сумма длин сторон треугольника всегда больше
длины третьей стороны, то есть третья сторона меньше 8+10=18,
и она может принимать любое целое значение, от 1 см по 17 см
9). В прямоугольном треугольнике наибольшая сторона МТ=39, МК=19,5. Чему равен
вопрос не сформулирован
2 часть
1). Внутри равностороннего треугольника АВС отмечена точка К, такая, что углы ВАК и ВСК равны 150. Найдите АКС. ( ) В условии что-то напутано, не могут ВАК и ВСК равнятья 150 градусов
2). Длины двух сторон равнобедренного треугольника равны соответственно 3 см и 1 см. Определите длину третьей стороны этого треугольника. ( ) В равнобедр треуг две одинаковых стороны. Если это стороны по 3 см, то такой треугольник существует, выполняется условие, что сумма двух сторон треуг больше его третьей стороны. Если бы 2 одинаковые стороны были бы по 1 см, то это условие не выполнится, 1+1<3, значит, такого треуг не существует. ответ: третья сторона длиной 3 см
3). В равнобедренном треугольнике с боковой стороной, равной 14 см и углом 1500 найдите высоту, проведенную к боковой стороне. ( )
4). Докажите, что любая сторона треугольника меньше суммы двух других сторон. ( )
не знаю, как у вас в учебнике, можно просто нарисовать
длинную сторону и "положить" на нее с каждого края отрезки, сумма которых равна
этой стороне или меньше ее, сразу станет понятно.
Объяснение: