У кубі ABCDA1B1C1D1 побудуйте переріз площиною, яка проходить через точки А, В, К, де точка К — середина ребра СС1. Знайдіть периметр перерізу, якщо ребро куба дорівнює 2 см.
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
Пусть A и B – две соседние вершины правильного многоугольника. Проведем биссектрисы углов многоугольника из вершин A и B. Пусть O – точка их пересечения. Треугольник AOB – равнобедренный с основанием AB и углами при основании, равными α / 2, где α – градусная мера угла многоугольника. Соединим точку O с вершиной C, соседней с B. Треугольники AOB и BOC равны по первому признаку равенства треугольников (теорема 4.1), так как AB = BC, OB – общая сторона, OBC = α / 2 = OBA. Отсюда имеем OC = OB = OA. OCB = α / 2. Так как C = α, то CO – биссектриса угла C. Аналогично, рассматривая последовательно вершины, соседние с ранее рассмотренными, получаем, что каждый треугольник, у которого одна сторона – сторона многоугольника, а противолежащая вершина – точка O, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на основания. Отсюда следует, что все вершины треугольника равноудалены от точки O на расстояние длины боковой стороны и лежат на одной окружности, а все стороны многоугольника касаются окружности с центром в точке O и радиусом, равным высотам треугольников, опущенным из вершины O.
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
Теорема доказана