Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r
2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем
3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим:
49п=153,86ед^2
Объяснение:
Обазначим сторону квадрата а.
Радиус внутренней окружности
кольца г.
Радиус внешней окружности
кольца R.
Дано:
а=14
Кольцо, образован
ное вписанной и
описанной окр.
Найти S(кольца) - ?
По условию:
r=a/2=14/2=7(ед.)
R=Д/2
Д - диагональ квадрата.
По теореме Пифагора
Д=(14^2+14^2)^1/2
Д=392^1/2
R=Д/2=((392)^1/2)/2
R^2=392/4=98
r^2=7^2=49
Окружности концентрические
==>
S(кольца)=S(внеш.) - S(внутр.)
S(внеш.)=пR^2
S(внутр.)=пr^2
S(кольца)=пR^2-пr^2=п×98-п×49=
=п(98-49)=49п=49×3,14=153,86(ед.^2)
ответ: 49п
Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r
2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем
3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим: