Дано: ∆ АВС, АВ = ВС (то есть АС - основание), угол D = 140° Решение Найдём угол В (ну или угол АВС, это одно и то же). По свойству внешнего угла он равен 180° - 140° = 40° Угол А = угол С (св-во равнобедренного треугольника) Угол А + угол В + угол С = 180° (теорема о сумме углов треугольника) Отсюда, угол А = (180° - 40°)/2 = 70°. Угол С также равен 70° 70° > 40°. Воспользуемся неравенством треугольника (против большего угла лежит большая сторона и обратно: против большей стороны лежит больший угол). Так как угол В — наименьший угол, а также угол при вершине, против которого лежит сторона АС, то сторона АС — наименьшая. ответ: б)
Равнобедренный треугольник биссектрисами своих углов и радиусами вписанной окружности разбивается на 6 треугольников - А1, А2, В1, В2, В3, В4 Два типа дочерних треугольников Тип А прямоугольный, угол против катета в 8 см (радиуса) равен 60 градусов Его второй катет а 8/а = tg(60°) 8/а = √3 а = 8/√3 см В периметре исходного треугольника участвуют два катета а Тип В Угол при основании исходного треугольника (180-120)/2 = 30° Острый угол в этих треугольниках равен половине, 15° И катет против угла в 15° равен 8 см, радиусу вписанной окружности катет, прилегающий катет b 8/b = tg(15°) b = 8/tg(15°) = 8/(2-√3) избавимся от иррациональности в знаменателе, домножив на (2+√3) b = 8*(2+√3)/(2²-(√3)²) = 8*(2+√3)/(4-3) = 8*(2+√3) см и в периметре исходного треугольника катеты b встречаются 4 раза P = 2a + 4b = 16/√3 + 32(2+√3) = 16/3*(12 + 7√3) см
Решение
Найдём угол В (ну или угол АВС, это одно и то же). По свойству внешнего угла он равен 180° - 140° = 40°
Угол А = угол С (св-во равнобедренного треугольника)
Угол А + угол В + угол С = 180° (теорема о сумме углов треугольника)
Отсюда, угол А = (180° - 40°)/2 = 70°. Угол С также равен 70°
70° > 40°. Воспользуемся неравенством треугольника (против большего угла лежит большая сторона и обратно: против большей стороны лежит больший угол). Так как угол В — наименьший угол, а также угол при вершине, против которого лежит сторона АС, то сторона АС — наименьшая.
ответ: б)
Два типа дочерних треугольников
Тип А
прямоугольный, угол против катета в 8 см (радиуса) равен 60 градусов
Его второй катет а
8/а = tg(60°)
8/а = √3
а = 8/√3 см
В периметре исходного треугольника участвуют два катета а
Тип В
Угол при основании исходного треугольника (180-120)/2 = 30°
Острый угол в этих треугольниках равен половине, 15°
И катет против угла в 15° равен 8 см, радиусу вписанной окружности
катет, прилегающий катет b
8/b = tg(15°)
b = 8/tg(15°) = 8/(2-√3)
избавимся от иррациональности в знаменателе, домножив на (2+√3)
b = 8*(2+√3)/(2²-(√3)²) = 8*(2+√3)/(4-3) = 8*(2+√3) см
и в периметре исходного треугольника катеты b встречаются 4 раза
P = 2a + 4b = 16/√3 + 32(2+√3) = 16/3*(12 + 7√3) см