Смысл построения виден из рисунка. Если треугольник АВС (который надо построить по условию задачи) "достроить" до паралелограмма АВСЕ (то есть AB II CE, AC II BE), то перпендикуляры КЕ и МЕ к сторонам АВ и АС - суть заданные высоты.
При этом очевидно, что точки А, К, Е и М лежат на окружности с центром в точке О (середина ВС).
Поэтому порядок построения треугольника АВС по заданным медиане m и высотам h1 и h2 такой.
1. Строится окружность диаметром АЕ = 2*m (то есть АО = m).
2. Строятся две вс окружности с центром в точке Е, радиусами h1 и h2. Точки пересечения этих окружностей с противоположных сторон от АЕ - это точки К и М, то есть так находятся хорды EK = h1 и EM = h2. Точки К и М соединяются с точкой А.
3. Из точки Е проводятся EC II AK, EB II AM. Получается параллелограмм, в котором АЕ - диагональ. Две другие вершины обозначаются В и С, диагональ ВС пройдет через середину АЕ, то есть полученный треугольник АВС имеет медиану АО = m и высоты, равные EK = h1 и EM = h2.
Параллелограмм переходит сам в себя при повороте на 180° вокруг точки пересечения диагоналей (пусть - верменно - эта точка называется "центр" параллелограмма). Это означает, что центры "противоположных" квадратов лежат на прямой, проходящей через "центр" параллелограмма.
Из приведенного рисунка видно, что фигура является частью ЗАМОЩЕНИЯ плоскости. То есть фигура, состоящая из 4 квадратов и 5 параллелограммов (на рисунке эта фигура обведена жирным) путем сдвига покрывает всю плоскость. В самом деле, противоположные ломанные "стороны" этой фигуры повторяют друг друга, то есть при смещении на какое-то расстояние переходят сами в себя.
В силу этого ВСЕ центры квадратов и параллелограммов лежат в узлах прямолинейной сетки. Дальше под словом "сетка" я имею ввиду сетку, в узлах которых лежат центры фигур (и квадратов, и параллелограммов). Сетка эта (как уже доказано) равномерная и прямолинейная (как говорят в таких случаях - обладает трасляционной инвариантностью :) )
Чтобы доказать, что эта сетка "квадратная" (то есть узлы лежат в вершинах квадратов), достаточно повернуть всю ЗАМОЩЕННУЮ плоскость вокруг цетра одного из квадратов (любого) на 90°. Проскольку сам квадрат при этом перейдет в себя, автоматически перейдет в себя и вся сетка узлов.
Но это означает - поскольку все узлы сетки (центры фигур) для самой сетки равнозначны, что сетка переходит сама в себя и при повороте на 90° вокруг центра параллелограмма.
Поэтому все центры квадратов лежат в вершинах квадрата.
Смысл построения виден из рисунка. Если треугольник АВС (который надо построить по условию задачи) "достроить" до паралелограмма АВСЕ (то есть AB II CE, AC II BE), то перпендикуляры КЕ и МЕ к сторонам АВ и АС - суть заданные высоты.
При этом очевидно, что точки А, К, Е и М лежат на окружности с центром в точке О (середина ВС).
Поэтому порядок построения треугольника АВС по заданным медиане m и высотам h1 и h2 такой.
1. Строится окружность диаметром АЕ = 2*m (то есть АО = m).
2. Строятся две вс окружности с центром в точке Е, радиусами h1 и h2. Точки пересечения этих окружностей с противоположных сторон от АЕ - это точки К и М, то есть так находятся хорды EK = h1 и EM = h2. Точки К и М соединяются с точкой А.
3. Из точки Е проводятся EC II AK, EB II AM. Получается параллелограмм, в котором АЕ - диагональ. Две другие вершины обозначаются В и С, диагональ ВС пройдет через середину АЕ, то есть полученный треугольник АВС имеет медиану АО = m и высоты, равные EK = h1 и EM = h2.
Что и требовалось.
Параллелограмм переходит сам в себя при повороте на 180° вокруг точки пересечения диагоналей (пусть - верменно - эта точка называется "центр" параллелограмма). Это означает, что центры "противоположных" квадратов лежат на прямой, проходящей через "центр" параллелограмма.
Из приведенного рисунка видно, что фигура является частью ЗАМОЩЕНИЯ плоскости. То есть фигура, состоящая из 4 квадратов и 5 параллелограммов (на рисунке эта фигура обведена жирным) путем сдвига покрывает всю плоскость. В самом деле, противоположные ломанные "стороны" этой фигуры повторяют друг друга, то есть при смещении на какое-то расстояние переходят сами в себя.
В силу этого ВСЕ центры квадратов и параллелограммов лежат в узлах прямолинейной сетки. Дальше под словом "сетка" я имею ввиду сетку, в узлах которых лежат центры фигур (и квадратов, и параллелограммов). Сетка эта (как уже доказано) равномерная и прямолинейная (как говорят в таких случаях - обладает трасляционной инвариантностью :) )
Чтобы доказать, что эта сетка "квадратная" (то есть узлы лежат в вершинах квадратов), достаточно повернуть всю ЗАМОЩЕННУЮ плоскость вокруг цетра одного из квадратов (любого) на 90°. Проскольку сам квадрат при этом перейдет в себя, автоматически перейдет в себя и вся сетка узлов.
Но это означает - поскольку все узлы сетки (центры фигур) для самой сетки равнозначны, что сетка переходит сама в себя и при повороте на 90° вокруг центра параллелограмма.
Поэтому все центры квадратов лежат в вершинах квадрата.