В правильной треугольной пирамиде двугранный угол при основании равен 60°. Отрезок, соединяющий основание высоты пирамиды с серединой апофемы, равен 3. Найдите площадь полной поверхности пирамиды.
* * *
Решение.
Двугранный угол измеряется величиной линейного угла между двумя лучами, проведенными перпендикулярно к одной точке ребра двугранного угла.
Боковая грань правильной пирамиды - равнобедренный треугольник. Апофема МН и высота СН основания перпендикулярны ребру АВ в его середине Н. АН=ВН.
Угол МНС - линейный угол двугранного угла при основании пирамиды.
Вершина правильной пирамиды проецируется в центр основания - точку пересечения его медиан ( высот, биссектрис).
Высота пирамиды МО - перпендикулярна плоскости основания,⇒
МО⊥СН.
∆ МОН - прямоугольный, КО - его медиана.
По свойству медианы прямоугольного треугольника МК=КН=КО=3, ⇒ МН=2•3=6
По условию ∠КНО=60°.
В ∆ КОН стороны КО=НК ⇒ НО=КО=3
СН медиана и высота основания АВС,
Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины.
1) знайдемо більшу сторону основи : 5²+12²=25+144=169 √=13 см , знайдемо площу основи , 1/2*5*12=30 см² , основ дві тому 2*30=60 см², шукаємо площі бічних сторін: 12*10+5*10+13*10=120+50+130=300 см²
тепер все разом: 300+60=360 см²
3) розрізали ціліндр по осі, в перерізі маємо квадрат, сторона якого є діаметром, площа квадрата за умовою є36 см², тому сторона квадрата(діаметр) буде 6 см. Тепер шукаємо площі основ і бокову поверхню циліндра. В основі циліндра є площа круга , S круг.=πД²/4=π6²/4=18πсм² основ двы , тому площа основ = 36π см², бокова поверхня циляндра є прямокутник , основа якого є довжина кола * на висоту . С=π*Д=6π а так як висота теж дорівнює діаметру, маємо бокову поверхню 36π Площа повної поверхні буде:36π+18π=54 π
В правильной треугольной пирамиде двугранный угол при основании равен 60°. Отрезок, соединяющий основание высоты пирамиды с серединой апофемы, равен 3. Найдите площадь полной поверхности пирамиды.
* * *
Решение.
Двугранный угол измеряется величиной линейного угла между двумя лучами, проведенными перпендикулярно к одной точке ребра двугранного угла.
Боковая грань правильной пирамиды - равнобедренный треугольник. Апофема МН и высота СН основания перпендикулярны ребру АВ в его середине Н. АН=ВН.
Угол МНС - линейный угол двугранного угла при основании пирамиды.
Вершина правильной пирамиды проецируется в центр основания - точку пересечения его медиан ( высот, биссектрис).
Высота пирамиды МО - перпендикулярна плоскости основания,⇒
МО⊥СН.
∆ МОН - прямоугольный, КО - его медиана.
По свойству медианы прямоугольного треугольника МК=КН=КО=3, ⇒ МН=2•3=6
По условию ∠КНО=60°.
В ∆ КОН стороны КО=НК ⇒ НО=КО=3
СН медиана и высота основания АВС,
Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины.
СН=3•ОН=9.
S ∆ ABC=CH•AB:2=0•6√3:2=27√3
S бок=3•МН•AB:2=3•6•6√3:2=54√3
Sполн=27√3+54√3=81√3 (ед. площади)
Объяснение:
1) знайдемо більшу сторону основи : 5²+12²=25+144=169 √=13 см , знайдемо площу основи , 1/2*5*12=30 см² , основ дві тому 2*30=60 см², шукаємо площі бічних сторін: 12*10+5*10+13*10=120+50+130=300 см²
тепер все разом: 300+60=360 см²
3) розрізали ціліндр по осі, в перерізі маємо квадрат, сторона якого є діаметром, площа квадрата за умовою є36 см², тому сторона квадрата(діаметр) буде 6 см. Тепер шукаємо площі основ і бокову поверхню циліндра. В основі циліндра є площа круга , S круг.=πД²/4=π6²/4=18πсм² основ двы , тому площа основ = 36π см², бокова поверхня циляндра є прямокутник , основа якого є довжина кола * на висоту . С=π*Д=6π а так як висота теж дорівнює діаметру, маємо бокову поверхню 36π Площа повної поверхні буде:36π+18π=54 π