У паралелограмі ABCD проведено бісектриси кутів A і D, які поділили сторону BC на три рівних відрізки: BF, FE і EC (див. рисунок). Знайти сторону AB паралелограма, якщо йогопериметр дорівнює 48 см
Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Исходя из этого:
1) |AB+BC|=|AC|, то есть |AB+BC|= а.
2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3.
|AB+AC|=а*√3.
3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1.
|AB+CB|=а*√3.
4) |ВА-ВC|=|CA|=а.
5) |АВ-АC|=|CВ|=а.
∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)