У паралелограмі бісектриса гострого кута, який дорівнює 30°, ділить його сторону на відрізки 25см і 15см, починаючи від вершини тупого кута. Знайдіть площу паралелограма.
Решай по этому примеру посмотри и поймёшь Сделаем к задаче рисунок. Обозначим точку пересечения биссектрис Δ АВС ( в котором ∠ С равен 61°) буквой М. Рассмотрим треугольник АВМ.∠ МАВ = ½ ∠ ВАС, ∠ АВМ = ½ ∠ АВС, тогда ∠ АМВ =180° -½ (∠ АВС + ∠ ВАС). Острый угол между биссектрисами на рисунке обозначен ɣ. Угол ɣ смежный с углом АМВ, следовательно, ɣ = ½ (∠ АВС + ∠ ВАС). Поскольку ∠С треугольника АВС =61°, то ∠ АВС + ∠ ВАС = 119°. Тогда ɣ =½ (∠ АВС + ∠ ВАС) = 119° : 2 = 59,5° ответ: 59,5° если не нравится то можешь не решать я привёл пример.
Сделаем к задаче рисунок. Обозначим точку пересечения биссектрис Δ АВС ( в котором ∠ С равен 61°) буквой М. Рассмотрим треугольник АВМ.∠ МАВ = ½ ∠ ВАС, ∠ АВМ = ½ ∠ АВС, тогда ∠ АМВ =180° -½ (∠ АВС + ∠ ВАС).
Острый угол между биссектрисами на рисунке обозначен ɣ. Угол ɣ смежный с углом АМВ, следовательно, ɣ = ½ (∠ АВС + ∠ ВАС). Поскольку ∠С треугольника АВС =61°, то ∠ АВС + ∠ ВАС = 119°. Тогда ɣ =½ (∠ АВС + ∠ ВАС) = 119° : 2 = 59,5°
ответ: 59,5°
если не нравится то можешь не решать я привёл пример.
треугольник АВС прямоугольный равнобедренный, уголА=уголВ=90/2=45
можно сразу, треугольник АВС равнобедренный, уголА=уголС, дуга АВ=дугаВС=1/4 окружности=360/4=90, уголА вписанный=1/2дугиВС=90/2=45=уголС