У похилій трикутній призмі, бічне ребро якої дорівнює 12, проведено переріз, перпендикулярний до бічного ребра. цей переріз є трикутником зі сторонами 3 см і 5 см та кутом 120° між ними. знайдіть площу бічної поверхні призми (малюнок також) до іть будь ласка , і малюнок
Объяснение:
РЕШЕНИЕ
сделаем построение по условию
h -высота
АС=а - основание под высотой h
AC=AK+KC=6+9=15 см
AC=a=15
AВ=b=13
ВC=c=14
периметр Р=a+b+c=15+13+14=42
полупериметр р=Р/2=42/2=21
по формуле Герона площадь треугольника АВС
S=√ (p*(p-a)(p-b)(p-c))
S=√ (21*(21-15)(21-13)(21-14))=84
другая формула для расчета площади треугольника АВС
S=1/2*h*a
h=2S/a=2*84/15=11.2
площадь треугольника ABK
S(АВК)=1/2*h*AK=1/2*11.2*6=33.6 см2
площадь треугольника CBK
S(СВК)=1/2*h*KC=1/2*11.2*9=50.4 см2
проверка 33.6 +50.4 =84
ОТВЕТ S(АВК) =33.6 см2 ; S(СВК) =50.4 см2
Эта задача на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. А для этого нам даны координаты. Найдем коориданты векторов AB,BC,AC. Для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
AB(1-0;-1-1; 2+1)=AB(1;-2;3)
BC(3-1;1+1;0-2)=BC(2;2;-2)
AC(3-0;1-1;0+1)=AC(3;0;1)
Теперь найдем длину этих векторов.
Теперь запишем теорему косинусов, используя косинус угла С.
Нужно все проверить!