У правильній чотирикутній піраміді висота дорівнює √6 см, а діагональ основи 6√2 см. Встанови між елементами піраміди та їх числовими значеннями. * А) 4 см;
Б) 5 см;
В) 6 см
Г) 10 см;
1)сторона основи піраміди
2)бічне ребро піраміди
3)апофема піраміди
4)висота піраміди
Выберите вариант ответа в каждой строк
Если сделать чертеж, то все сразу становится понятно.
Обозначим центр окружности О. Исходную точку, из которой провели диаметр, проходящий через т.О, и хорду, равную радиусу, назовем точкой А. Точку пересечения окружности и хорды, назовем точкой В.
Достроим треугольник АВО, в котором АО и ВО - радиусы окружности, АВ - хорда, равная радиусу окружности, то есть:
АО=ОВ=АВ=r
Итого, мы получили равносторонний треугольник.
Как известно все углы в равностороннем треугольнике равны 60° (180/3=60)
ответ: угол ОАВ=60⁰
Основание правильной четырехугольной пирамиды - правильный четырехугольник или квадрат. Для того, чтобы найти площадь основания - надо найти длину стороны основания.
Диагональное сечение пирамиды - это треугольник, имеющий основанием диагональ квадрата, а сторонами - боковые ребра.
Пусть длина диагонали равна b, тогда длина стороны квадрата будет равна, по теореме Пифагора a = b/sqrt(2) (Нарисуйте квадрат - разделите его диагональю. Диагональ - это гипотенуза, стороны - катеты).
Площадь треугольника - сечения пирамиды, равна:
S1 = b*h/2,
где h - высота пирамиды, Т.к. пирамида правильная. Высота пирамиды делит сечение на 2 прямоугольных треугольника, так что, по теореме Пифагора:
h = sqrt(25 - b^2/4)
С другой стороны, площадь основания равна:
S2 = a^2
Приравнивая S1 = S2 и исключая h, находим:
b^2/4 = b*sqrt(25 - b^2/4)/2
или
b^2 = 2b*sqrt(25 - b^2/4)
b = 2sqrt(25 - b^2/4)
Из этого уравнения находите диагональ b, а затем стороно а и площадь квадра S2.
Вот и все! Удачи!