у правильній чотирикутній призмі сторона основи дорівнює 10 см, а діагональ утворює з площиною основи кут 60°, діагональ основи = 10√2. Знайти 1) діагональ призми; 2) висоту призми; 3) діагональ бічної грані
Пусть наименьший из углов равен х, а величина возрастания каждого последующего угла - у. х+х+у+х+2у=180 ⇒ 3х+3у=180 ⇒ у=60-х. Запомним это.
Теперь тем же запишем сумму всех шести углов, сумма которых будет равна 180+360=540°. х+х+у+х+2у+х+3у+х+4у+х+5у=540, 6х+15у=540, 6х+15(60-х)=540, 6х+900-15х=540, 9х=360, х=40, у=60-40=20.
Последовательный ряд всех углов: 40°, 60°, 80°, 100°, 120°, 140°. Сумма внутренних углов: 40+60+80=180°, Сумма внешних углов: 100+120+140=360°. (этот абзац можно не писать, просто проверка).
х+х+у+х+2у=180 ⇒ 3х+3у=180 ⇒ у=60-х. Запомним это.
Теперь тем же запишем сумму всех шести углов, сумма которых будет равна 180+360=540°.
х+х+у+х+2у+х+3у+х+4у+х+5у=540,
6х+15у=540,
6х+15(60-х)=540,
6х+900-15х=540,
9х=360,
х=40,
у=60-40=20.
Последовательный ряд всех углов: 40°, 60°, 80°, 100°, 120°, 140°.
Сумма внутренних углов: 40+60+80=180°,
Сумма внешних углов: 100+120+140=360°. (этот абзац можно не писать, просто проверка).
ответ: меньший из внутренних углов равен 40°.
1) BC -?
2) (меньшая сторона) -?
1) AB/sin∠C =BC/sinA = AC/sin∠B = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла ,
эта сторона BC(лежит против меньшего угла ∠A=30°).
длину AC не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .
sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.
* * * * * * * Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.