У правильній трикутній піраміді радіус кола, описаного навколо основи, дорівнює 4см. Бічні грані нахилені до площини основи під кутом 60°. Обчислити об'єм піраміди.
Проведем через вершину сечение, перпендикулряное стороне основания. В нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из S на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. Нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (Эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.) В этом треугольнике нам задан так же угол в 60 градусов. Далее все очевидноd*cos(60) = a/2; Sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;Sбок = 2*4*16/3 = 128/3 площадь основания в 2 раза меньше (Sбок*cos(60)), это 64/3. А ВСЯ площадь поверхности будет 64.
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Двугранный угол SKО равен 30°. Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3): SО=ОК*tg 30=3*1/√3=√3 Площадь основания Sосн=АВ²=6²=36 Объем V=Sосн*SO/3=36*√3/3=12√3
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Двугранный угол SKО равен 30°.
Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3):
SО=ОК*tg 30=3*1/√3=√3
Площадь основания Sосн=АВ²=6²=36
Объем
V=Sосн*SO/3=36*√3/3=12√3