Дано:
АВ = 27 м - высота башни (А - вершина башни, В - основание башни)
∠АКВ = 60°
Найти:
а) расстояние КВ от точки К до основания башни В
б) расстояние КА от точки К до вершины башни А
Треугольник АВК - прямоугольный с гипотенузой КА и катетом КВ, прилегающим к углу АКВ = 60° и известным катетом АВ=27 м, противолежащим углу АКВ.
а) Катет КВ = АВ · ctg ∠АКВ = 27 · ctg 60° = 27 · 1/√3 ≈ 15,6 (м)
б) Гипотенуза КА = АВ : sin ∠АКВ = 27 : sin 60° = 27 : 0.5√3 ≈ 31,2 (м)
а) Расстояние от точки К до основания башни В: КВ ≈ 15,6 м
б) Расстояние от точки К до вершины башни А: КА ≈ 31,2 м
Дано:
АВ = 27 м - высота башни (А - вершина башни, В - основание башни)
∠АКВ = 60°
Найти:
а) расстояние КВ от точки К до основания башни В
б) расстояние КА от точки К до вершины башни А
Треугольник АВК - прямоугольный с гипотенузой КА и катетом КВ, прилегающим к углу АКВ = 60° и известным катетом АВ=27 м, противолежащим углу АКВ.
а) Катет КВ = АВ · ctg ∠АКВ = 27 · ctg 60° = 27 · 1/√3 ≈ 15,6 (м)
б) Гипотенуза КА = АВ : sin ∠АКВ = 27 : sin 60° = 27 : 0.5√3 ≈ 31,2 (м)
а) Расстояние от точки К до основания башни В: КВ ≈ 15,6 м
б) Расстояние от точки К до вершины башни А: КА ≈ 31,2 м
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.