У прямій трикутній призмі сторони основи дорівнюють 7см, 15см і 20см. Через бічне ребро призми і найменшу за довжиною висоту основи проведено переріз, площа якого дорівнює 21см². Знайдіть об'єм призми
1.Диагональ делит данный четырехугольник на два треугольника. Сторона искомого четырехугольника является средней линией треугольника и равнв половине диагонали. Значит, стороны искомого четырехугольника равны: 7:2=3,5 и 25:2=12,5. Периметр искомого четырехугольника = (3,5+12,5)*2=32. 2.Гипотенура прямоугольного треугольника, вписанного в окружность, равна диаметру этой окружности, значит, радиус описанной окружности равен половине гипотенузы, т.е. 15. 3.Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы, значит, гипотенуза равна 20.
Окружность называется описанной вокруг прямоугольного треугольника, в том случае, если все вершины прямоугольного треугольника лежат на этой окружности. Вокруг прямоугольного треугольника можно описать лишь одну окружность.
Формула для радиуса описанной вокруг прямоугольного треугольника окружности:
R = 1/2 * √(a*a + b*b),
где a,b - стороны треугольника.
Следует отметить, что диаметр описанной вокруг прямоугольного треугольника окружности равен гипотенузе прямоугольного треугольника. Значит,надо найти гипотенузу.Сторона ,лежащая против угла в 30 градусов равна половине гипотенузы.Значит ,последняя равна 8 см,а радиус окружности,описанной вокруг этого треугольника равен 4
2.Гипотенура прямоугольного треугольника, вписанного в окружность, равна диаметру этой окружности, значит, радиус описанной окружности равен половине гипотенузы, т.е. 15.
3.Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы, значит, гипотенуза равна 20.
Окружность называется описанной вокруг прямоугольного треугольника, в том случае, если все вершины прямоугольного треугольника лежат на этой окружности.
Вокруг прямоугольного треугольника можно описать лишь одну окружность.
Формула для радиуса описанной вокруг прямоугольного треугольника окружности:
R = 1/2 * √(a*a + b*b),
где a,b - стороны треугольника.
Следует отметить, что диаметр описанной вокруг прямоугольного треугольника окружности равен гипотенузе прямоугольного треугольника.
Значит,надо найти гипотенузу.Сторона ,лежащая против угла в 30 градусов равна половине гипотенузы.Значит ,последняя равна 8 см,а радиус окружности,описанной вокруг этого треугольника равен 4