Примем начало координат в центре квадрата. Тогда его диагонали будут включать уравнения прямых у = х и у = -х. Уравнения окружностей: (х + (R/2))² + y² = R² и (х - (R/2))² + y² = R². Вершины квадрата будут в точках пересечения окружностей с прямыми у = х и у = -х. Подставим в уравнения вместо у значение х, а R примем равным 1. Получим квадратное уравнение: 8х² + 4х - 3 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=4^2-4*8*(-3)=16-4*8*(-3)=16-32*(-3)=16-(-32*3)=16-(-96)=16+96=112; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√112-4)/(2*8)=(√112-4)/16=√112/16-4/16=√112/16-0.25 = (√7 - 1)/4 ≈ 0.41143782776615;x_2=(-√112-4)/(2*8)=(-√112-4)/16=-√112/16-4/16=-√112/16-0.25 ≈ -0.91143782776615. Отрицательное значение отбрасываем, так как эта точка выходит за пределы общей части окружностей.
Получаем ответ: сторона квадрата равна двум длинам от нуля до плюс-минус х, то есть а = 2*((√7 - 1)/4)*R ≈ 0,8228757R..
3:4 это задача на части . Как понять эту запись? На одну диагональ приходится 3 части, на другую приходится 4 таких же части. Обозначим 1 часть за х см. Значит, одна диагональ = 3х см, другая = 4х см. Диагонали ромба деля ромб на 4 равных прямоугольных треугольника Для одно запишем т. Пифагора: (3х/2)² + (4х/2)² = 50² 9х²/4 +4х² = 2500 25х²/4 = 2500 х² = 400 х = 20 Значит одна диагональ = 60 см, а другая = 80 см Площадь ромба = половине произведения его диагоналей. S = 1/2*60*80 = 2400(см²) Но ромб является параллелограммом. А площадь вычисляется по формуле : S = а*h 2400 = 50h h = 2400^50 = 48
Тогда его диагонали будут включать уравнения прямых у = х и у = -х.
Уравнения окружностей:
(х + (R/2))² + y² = R² и (х - (R/2))² + y² = R².
Вершины квадрата будут в точках пересечения окружностей с прямыми у = х и у = -х.
Подставим в уравнения вместо у значение х, а R примем равным 1.
Получим квадратное уравнение:
8х² + 4х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=4^2-4*8*(-3)=16-4*8*(-3)=16-32*(-3)=16-(-32*3)=16-(-96)=16+96=112;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√112-4)/(2*8)=(√112-4)/16=√112/16-4/16=√112/16-0.25 = (√7 - 1)/4 ≈ 0.41143782776615;x_2=(-√112-4)/(2*8)=(-√112-4)/16=-√112/16-4/16=-√112/16-0.25 ≈ -0.91143782776615. Отрицательное значение отбрасываем, так как эта точка выходит за пределы общей части окружностей.
Получаем ответ: сторона квадрата равна двум длинам от нуля до плюс-минус х, то есть а = 2*((√7 - 1)/4)*R ≈ 0,8228757R..
(3х/2)² + (4х/2)² = 50²
9х²/4 +4х² = 2500
25х²/4 = 2500
х² = 400
х = 20
Значит одна диагональ = 60 см, а другая = 80 см
Площадь ромба = половине произведения его диагоналей.
S = 1/2*60*80 = 2400(см²)
Но ромб является параллелограммом. А площадь вычисляется по формуле : S = а*h
2400 = 50h
h = 2400^50 = 48