2У любого сечения параллелепипеда есть определенные характеристики. Основными из них являются площадь, периметр, длины диагоналей. Если из условия задачи известны стороны сечения или какие-либо иные его параметры, этого достаточно, чтобы найти его периметр или площадь. По сторонам определяются также диагонали сечений. Первый из этих параметров - площадь диагонального сечения. Для того чтобы найти площадь диагонального сечения, нужно знать высоту и стороны основания параллелепипеда. Если даны длина и ширина основания параллелепипеда, то диагональ найдите по теореме Пифагора: d=√a^2+b^2. Найдя диагональ и зная высоту параллелепипеда, вычислите площадь сечения параллелепипеда: S=d*h.3Периметр диагонального сечения тоже можно вычислять по двум величинам - диагонали основания и высоте параллелепипеда. В этом случае вначале найдите две диагонали (верхнего и нижнего оснований) по теореме Пифагора, а затем сложите с удвоенным значением высоты.4Если провести плоскость, параллельную ребрам параллелепипеда, можно получить сечение-прямоугольник, сторонами которого являются одна из сторон основания параллелепипеда и высота. Площадь этого сечения найдите следующим образом: S=a*h. Периметр этого сечения найдите аналогичным образом по следующей формуле: p=2*(a+h).5Последний случай возникает, когда сечение проходит параллельно двум основаниям параллелепипеда. Тогда его площадь и периметр равны значению площади и периметра оснований, т.е.: S=a*b - площадь сечения;
Раз треугольник АПФ равнобедренный, то у него, как у любого порядочного равнобедренного треугольника равны углы при основании, то есть углы ПАФ и АФП равны. По условию АФ биссектриса угла БАЦ, следовательно угол ФАЦ равен углу ПАФ, и он же равен АФП. Итого, получаем, что прямая АФ пересекается двумя: ПФ и АЦ под одним и тем же углом, значит по признаку параллельности прямых, ПФ и АЦ параллельны друг другу. Это, типа, доказанный медицинский факт.
Теперь с длиной. Заметим, что раз ПФ параллельна АЦ, как мы только что доказали, то треугольники АБЦ и ПБФ подобны по трём углам. Следовательно ПФ / АЦ = БФ / БЦ = 2 : (1+2) = 2:3. Итого, получаем что ПФ = АЦ * 2 : 3 = 6 * 2 : 3 = 4 см.
Для того чтобы найти площадь диагонального сечения, нужно знать высоту и стороны основания параллелепипеда. Если даны длина и ширина основания параллелепипеда, то диагональ найдите по теореме Пифагора:
d=√a^2+b^2.
Найдя диагональ и зная высоту параллелепипеда, вычислите площадь сечения параллелепипеда:
S=d*h.3Периметр диагонального сечения тоже можно вычислять по двум величинам - диагонали основания и высоте параллелепипеда. В этом случае вначале найдите две диагонали (верхнего и нижнего оснований) по теореме Пифагора, а затем сложите с удвоенным значением высоты.4Если провести плоскость, параллельную ребрам параллелепипеда, можно получить сечение-прямоугольник, сторонами которого являются одна из сторон основания параллелепипеда и высота. Площадь этого сечения найдите следующим образом:
S=a*h.
Периметр этого сечения найдите аналогичным образом по следующей формуле:
p=2*(a+h).5Последний случай возникает, когда сечение проходит параллельно двум основаниям параллелепипеда. Тогда его площадь и периметр равны значению площади и периметра оснований, т.е.:
S=a*b - площадь сечения;
p=2*(a+b).
Теперь с длиной. Заметим, что раз ПФ параллельна АЦ, как мы только что доказали, то треугольники АБЦ и ПБФ подобны по трём углам. Следовательно ПФ / АЦ = БФ / БЦ = 2 : (1+2) = 2:3.
Итого, получаем что ПФ = АЦ * 2 : 3 = 6 * 2 : 3 = 4 см.
Такой получается ответ, однако.