Раз уж первую задачу решили правильно, её расписывать не буду. 2) В прямоугольном треугольнике катет равен среднему пропорциональному гипотенузы и проекции этого катета на гипотенузу. Другими словами, квадрат катета равен произведению гипотенузы на проекцию катета. АВ²=АН·АС=10·40=400, АВ=20 - это ответ.
3) Точка, равноудалённая от сторон треугольника является центром вписанной в него окружности. Он, в свою очередь, лежит на пересечении биссектрис треугольника, значит АО - биссектриса угла АВС. ∠АВС=2∠АВО=2·39=78°. В тр-ке АОС ∠ОАС+∠ОСА=(∠ВАС+∠ВСА)/2=(180-∠АВС)/2=(180-78)/2=51°. ∠АОС=180-(∠ОАС+∠ОСА)=180-51=129° - это ответ.
PS. Так как точка О не является центром описанной вокруг треугольника окружности, нельзя говорить о том, что угол АВС вписанный и, тем более, что угол АОС центральный и что он равен двум вписанным.
Логично, что если угол BCD - это х, то его половинки - это х/2.
Составим уравнение.
3х+х-х/2=180°
При выполнении несложных математических расчётов получается, что х(угол BCD)=51 3/7°
Следовательно, угол АСВ=180°-51 3/7°=128 4/7°
ответ: 51 3/7° и 128 4/7°.
(это то, что записано в условии. ответы странные, странные и смежные углы... АВС и ВСD не могут быть смежными. смежными могут быть только АСВ и ВСD, как указано в вопросе к задаче... смотри ещё раз условие внимательнее)
2) В прямоугольном треугольнике катет равен среднему пропорциональному гипотенузы и проекции этого катета на гипотенузу. Другими словами, квадрат катета равен произведению гипотенузы на проекцию катета.
АВ²=АН·АС=10·40=400,
АВ=20 - это ответ.
3) Точка, равноудалённая от сторон треугольника является центром вписанной в него окружности. Он, в свою очередь, лежит на пересечении биссектрис треугольника, значит АО - биссектриса угла АВС. ∠АВС=2∠АВО=2·39=78°.
В тр-ке АОС ∠ОАС+∠ОСА=(∠ВАС+∠ВСА)/2=(180-∠АВС)/2=(180-78)/2=51°.
∠АОС=180-(∠ОАС+∠ОСА)=180-51=129° - это ответ.
PS. Так как точка О не является центром описанной вокруг треугольника окружности, нельзя говорить о том, что угол АВС вписанный и, тем более, что угол АОС центральный и что он равен двум вписанным.
Допустим, что угол АСМ - это 3х, а угол ВСD ⇒ х.
В сумме углы АСМ и ВСD минус угол МСD дают 180°.
Логично, что если угол BCD - это х, то его половинки - это х/2.
Составим уравнение.
3х+х-х/2=180°
При выполнении несложных математических расчётов получается, что х(угол BCD)=51 3/7°
Следовательно, угол АСВ=180°-51 3/7°=128 4/7°
ответ: 51 3/7° и 128 4/7°.
(это то, что записано в условии. ответы странные, странные и смежные углы... АВС и ВСD не могут быть смежными. смежными могут быть только АСВ и ВСD, как указано в вопросе к задаче... смотри ещё раз условие внимательнее)