У прямокутний ΔABC (∠C = 90º, ∠A = 60º) вписано ромб AMNK так, що кут A у них спільний, а всі інші вершини ромба лежать на сторонах трикутника. Знайдіть площу ромба S (у см2), якщо площа трикутника дорівнює см2.
1). Определения: "Вертикальные углы — пара углов, у которых вершина общая, а стороны одного угла составляют продолжение сторон другого угла. Смежными углами называются два прилежащих угла, не совпадающие стороны которых образуют прямую. Смежные углы в сумме равны 180°". <AOD и <DOB -смежные, значит <AOD + <DOB=180°. <AOD и <AOС -смежные, значит <AOD + <AOC=180°. Следовательно, <DOB=180°-<AOD и <AOC=180°-<AOD. Значит <AOC =<DOB. Эти углы - вертикальные, они равны, что и требовалось доказать. 2). Прямая а параллельна прямой с. Прямая b параллельна прямой с. Следовательно, при пересечении этих прямых прямой d, образубтся равные соответственные углы <1=<3 и <2=<3. Но если два угла равны третьему, значит эти углы равны между собой. Итак, <1=<2 - а это соответственные углы при прямых a и b и секущей d. Следовательно, прямые a и b - параллельны, а не перпендикулярны. 3).В любом прямоугольнике диагонали равны и делятся точкой пересечения пополам. Значит в треугольниках АВО и СDO АВ=СD (противоположные стороны прямоугольника) АО=ОС, ВО=ОD и следовательно, треугольники АВО и СDО равны по трем сторонам. Точно также доказывается, что треугольники ВОС и АОD равны. Но сторона АВ не равна стороне АD, значит треугольники АОВ и АОD - не равны. Но. Sabd=(1/2)*AB*AD. Sacd=(1/2)*CD*AD. AB=CD как противоположные стороны прямоугольника. Значит Sabd=Sacd. Но Sabd=Sabo+Saod, a Sacd=Scdo+Saod, следовательно Sabo=Scdo. В прямоугольнике диагонали, пересекаясь, делятся пополам. то есть в треугольнике ABD отрезок АО - медиана. По свойству медианы она делит треугольник на два РАВНОВЕЛИКИХ. То есть Sabo=Saod. Saod=Sboc (доказательство подобно приведенному для треугольников АВО и СDO) Следовательно, Sabo=Saod=Scod=Sboc. Диагонали любого прямоугольника делят его на 4 РАВНОВЕЛИКИХ, треугольника и на 4 попарно равных.
1) нет
2) да
3) нет
4) нет
5) нет
6) нет
7) нет
8) нет
9) нет; да
10) да
11) нет; да
13) да
14) нет
15) 16) да; да
Объяснение:
Параллелограмм - четырехугольник, у которого стороны попарно паралелльны
Свойства параллелограмма:
1) Противолежащие стороны и углы равны
2) Диагонали точкой пересечения делятся попол
ам
3) Биссектриса угла параллелограмма образует р/б ∆
Прямоугольник - параллелограмм, у которого все углы прямые
Свойства прямоугольника:
Те же, что и у параллелограмма 1) 2)
4) Диагонали прямоугольника равны
Ромб - параллелограмм, у которого все стороны равны
Свойства ромба:
Те же, что и у параллелограмма 1) 2)
5) Диагонали ромба взаимно перпендикулярны и делят его углы пополам
Квадрат - прямоугольник, у которого все стороны равны
Свойства квадрата:
Те же, что и прямоугольника и ромба 1) 2) 4) 5)
Смежными углами называются два прилежащих угла, не совпадающие стороны которых образуют прямую.
Смежные углы в сумме равны 180°".
<AOD и <DOB -смежные, значит <AOD + <DOB=180°.
<AOD и <AOС -смежные, значит <AOD + <AOC=180°.
Следовательно, <DOB=180°-<AOD и <AOC=180°-<AOD.
Значит <AOC =<DOB. Эти углы - вертикальные, они равны, что и требовалось доказать.
2). Прямая а параллельна прямой с. Прямая b параллельна прямой с. Следовательно, при пересечении этих прямых прямой d, образубтся равные соответственные углы <1=<3 и <2=<3. Но если два угла равны третьему, значит эти углы равны между собой. Итак, <1=<2 - а это соответственные углы при прямых a и b и секущей d. Следовательно, прямые a и b - параллельны, а не перпендикулярны.
3).В любом прямоугольнике диагонали равны и делятся точкой пересечения пополам. Значит в треугольниках АВО и СDO АВ=СD (противоположные стороны прямоугольника) АО=ОС, ВО=ОD и следовательно, треугольники АВО и СDО равны по трем сторонам. Точно также доказывается, что треугольники ВОС и АОD равны. Но сторона АВ не равна стороне АD, значит треугольники АОВ и АОD - не равны.
Но.
Sabd=(1/2)*AB*AD.
Sacd=(1/2)*CD*AD.
AB=CD как противоположные стороны прямоугольника.
Значит Sabd=Sacd.
Но Sabd=Sabo+Saod, a Sacd=Scdo+Saod, следовательно Sabo=Scdo.
В прямоугольнике диагонали, пересекаясь, делятся пополам. то есть в треугольнике ABD отрезок АО - медиана. По свойству медианы она делит треугольник на два РАВНОВЕЛИКИХ. То есть Sabo=Saod.
Saod=Sboc (доказательство подобно приведенному для треугольников АВО и СDO)
Следовательно, Sabo=Saod=Scod=Sboc.
Диагонали любого прямоугольника делят его на 4 РАВНОВЕЛИКИХ, треугольника и на 4 попарно равных.