ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
#1
Р = 24см
S = ?см^2
Р = а × 4 => а = Р : 4
а = 24 : 4 = 6см
S = а × а
S = 6 × 6 = 36см^2
#2
а□1 = 5см
S□1 = ?см^2 <|
а□2 = 5см × 2 = 10см |
S□2 = ?см^2, в ? раз больше, чем __|
Найдем площадь первого квадрата.
S□1 = 5 × 5 = 25см^2
Теперь площадь второго квадата.
S□2 = 10 × 10 = 100см^2
Теперь нужно узнать "во сколько раз площадь первого квадрата, больше площади второго квадрата" то есть, нужно разделить.
100 : 25 = 4 То есть в 4 раза больше.
#3
АВ
| |
| |
D||С
Сторона ОА =11см... ОА нету...
неправильное условие...
ответ: Ø