У прямокутному паралелепіпеді ABCDA1B1C1D1 точка Н належить ребру CD. Побудуйте переріз паралелепіпеда площиною, яка проходить через цю точку і паралельна площині перерізу ACD1.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.